Minimalist Algebraic Local Set Theory

Maria Emilia Maietti University of Padova

"Second Workshop on Mathematical Logic and its Applications" 5-9 March 2018, Kanazawa, Japan Abstract of our talk

- What is Algebraic Set Theory?
- Why developing it?
- Algebraic Set Theory for the extensional level of the Minimalist
 Foundation
- future work

What is Algebraic Set Theory?

origin:

Algebraic Set Theory, A. Joyal and I. Moerdijk, CUP, 1995

= Categorical set theory

see: http://www.phil.cmu.edu/projects/ast/whyast.html

What is Algebraic Set Theory?

in [JM95]

categorical models for ZFC and IZF axiomatic set theories

key point:

Von Neumann Universe V = Initial ZF-algebra

Peculiarity of Algebraic Set Theory

notion of model of a set theory via algebraic universal properties = derive set existence (including universes) via categorical properties

Our goal

Algebraic Set Theory

for

the Minimalist Foundation (MF)

actually for its extensional level in [M.'09]

intended as the minimalist set theory

where to formalize constructive mathematics

according to [M.-Sambin'05]

an example of categorical model for MF

in the next talk by Samuele Maschio

it employs a realizability interpretation

in joint work by us with

Hajime Ishihara and Thomas Streicher

to appear in 2018 in Archive for Mathematical Logic

essence of our talk

Why using Category Theory (CT) in model theory ?

- **CT** provide models type theories and their proof-terms in an easy/NON-trivial/intuitive way
- CT provides a framework to relate a calculus and its models in a way stronger than usual soundness-completeness relation via the Internal Language correspondence even for USUAL proof-irrelevant logical systems

Example where Categorical Modelling is necessary

No classical set theoretic notion of model

for Coquand's Calculus of Constructions

(the one implemented in **Coq**)

extending

standard set-theoretic model of typed lambda calculus

because

"Polymorphism is not set-theoretic" di John Reynolds, in "Semantics of Data Types", 1984

Volume 173 of the series Lecture Notes in Computer Science pp 145-156

and

All small complete categories are preordered (proof-irrelevant).

Killer application of Category Theory in logic

Lawvere's hyperdoctrines

=

notion of funtorial model

for classical/intuitionistic logic

even with equality

enjoy an Internal Language correspondence

with respect to the corresponding logic

while

Tarskian/ Complete Boolean valued models	
for classical logic	
and	DO NOT enjoy it
Topological/Complete Heyting valued models	
for intuitionistic logic	

Lawvere's hyperdoctrines for first order classical predicate calculus

- = Boolean hyperdoctrines
- i.e. suitable functors towards cat of Boolean algebras

D	$: \mathcal{C}^{OP}$	\longrightarrow	Boole
	A	\mapsto	D(A)
			Boolean algebra
	$f: A \to B$	\mapsto	$D(B) \to D(B)$
			Boolean algebra homomorphism
+ existential and universal adjunctions			

Lawvere's hyperdoctrines for first order intuitionistic predicate calculus

- = Heyting hyperdoctrines
- i.e. suitable functors towards cat of Heyting algebras

Novelty of Lawvere's hyperdoctrines

Connectives and quantifiers

are modelled as left/right adjoints

i.e. via universal properties

[Bill Lawvere, "Adjointness in Foundations", (TAC), Dialectica 23 (1969), 281-296]

Logical connectives as Adjoints

also called Galois connections

falsum constant	left adjoint to singleton constant functor
true constant	right adjoint to singleton constant functor
conjunction	right adjoint to diagonal functor
conjunction	left adjoint to diagonal functor
implication of ϕ , i.e. $\phi \rightarrow (-)$	right adjoint to the conjunction functor with ϕ
intuitionistic negation $\neg(-)$	left adjoint to itself towards the opposite category
classical negation $\neg(-)$	is ALSO right adjoint to itself towards the opposite category (to get the excluded middle principle)

Quantifiers as Adjoints

• Universal Quantifiers are Right Adjoints to Weakening:

 $\frac{\psi \leq_{[x]} \forall y.(\phi[z/y])}{Weak_z(\psi) \leq_{[x,z]} \phi}$

 $Weak_y(\psi) = \psi$ = ψ does NOT depend from y.

• Existential Quantifiers are Left Adjoints to Weakening

 $\frac{\exists y.(\phi[z/y]) \leq_{[x]} \psi}{\phi \leq_{[x,z]} Weak_z(\psi)}$

• + Beck-Chevalley conditions

Advantage of categorical modelling

easy proof of soundness+completeness theorem

NO need of NON-constructive principles

syntactic hyperdoctrine for classical/intuitionistic logic

=

initial boolean/Heyting hyperdoctrine

in the category of corresponding hyperdoctrines

+ related homomorphisms

LT_{LC} :

context of variable assumptions

Γ

 $\begin{array}{ll} \longrightarrow & \textbf{Boole} \\ \mapsto & LT(\Gamma) \\ & Lindenbaum algebra \\ & of formulas with variables in \Gamma \end{array}$

$$[t_1/x_1, \ldots, t_n/x_n]: \Delta \to \Gamma \quad \mapsto$$

n-tuple of term substitutions

 $LT_{LC}([t_1/x_1, \dots, t_n/x_n])$ substitution morphism Killer application of Categorical Logic

Lawvere's hyperdoctrines are related to the corresponding logic

NOT ONLY via usual **soundness+ completeness** relation:

but also.... via the internal language correspondence!!

To establish an internal language correspondence

Given a calculus au

• organize its theories (= τ + axioms) into a category with translations

$\mathrm{Th}(au)$

• organize a class of its models into a category

$\operatorname{Mod}(au)$

• Define a functor extracting the internal theory out of a model

 $\begin{array}{cccc} Int: & \operatorname{Mod}(\tau) & \to & \operatorname{Th}(\tau) \\ & & M & \mapsto & Int(\mathsf{M}) \end{array}$

internal theory of M

Define a model out of a theory of *τ*:

 $Syn: \operatorname{Th}(\tau) \to \operatorname{Mod}(\tau)$ $T \mapsto Syn(M)$ syntactic model of T

such that

for any model M $M \simeq Syn(Int(M)) \qquad T \simeq Int(Syn(T))$

for any theory T

logic	complete models	internal language
		correspondence
classical propositional logic	Boolean algebras	yes
intuitionistic propositional logic	Heyting algebras	yes
classical predicate logic	Complete Boolean valued models	NO
	Boolean hyperdoctrines	yes
intuitionistic predicate logic	Complete Heyting algebras	NO
	Heyting hyperdoctrines	yes

Other examples of internal languages

• first example: Benabou-Mitchell internal language of Lawvere-Tierney elementary topoi

as a many-sorted INTUITIONISTIC logic

• internal language as a dependent type theory à la Martin-Löf

is given for many categorical structures:

lex categories

regular categorie

locally cartesian closed categories

pretopoi

elementary topoi...

in [M.05] "Modular correspondence between dependent type theories and categories.."

Internal language of a topos is a local set theory

J. Bell *Toposes and Local Set Theories: An Introduction*. Clarendon Press, Oxford, 1988

Local Set Theory	=	Set theory with typed variables
	=	Set theory + Type Theory

axiomatic set theory	local set theory
for ex: Friedman's IZF	of <mark>topoi</mark>
first order predicate logic	many sorted logic
	with <i>sorts</i> = <mark>types</mark> =sets
\downarrow	\downarrow
untyped variables	typed variables
powerset axiom	powerset type
subsets as sets	subsets as elements of powerset
extensional equality of sets	extensional equality of subsets
one kind of functions:	two kinds of functions:
functional relations	functional relations
	+ functional typed terms (=base morphisms)
	whilst in bijection by unique choice rule

in the local set theory of topoi + natural numbers object

type of natural numbers	Nat
type of subsets of natural numbers	$\mathcal{P}(Nat)$
membership	from a subset
	$U\in \mathcal{P}(Nat)$
	we can form
	$x \varepsilon U \ prop \ [x \in Nat]$
comprehension axiom	from a proposition
	$\phi(x) \ prop \ [x \in Nat]$
	we can form
	$\{x \in Nat \mid \phi(x)\} \in \mathcal{P}(Nat)$
	s.t. it true that
	$\mathbf{n}\boldsymbol{\varepsilon} \{ x \in \underline{Nat} \mid \phi(x) \} \Leftrightarrow \phi(\mathbf{n})$

example of functional typed terms:

given a term

 $f(x,y) \in B \ [z \in C, x \in A]$

we can form

 $\lambda x.f(x) \in A \rightarrow B [z \in C]$

DEPENDENT typed internal language for topoi

Internal dependent type theory à la Martin-Löf

of elementary topoi

in [M'05, M.PhD thesis'98]

in

M.E.M "Modular correspondence between dependent type theories and categorical universes including pretopoi and topoi." MSCS, 2005

following [Bell'88]

internal dependent typed language = Local Set Theory

of topoi in [M'05]

- = Set theory with **dependent** typed variables
- = Set theory + **Dependent** Type Theory

Internal languages of topoi

Benabou/Mitchell language	Internal language in [M'05]
many sorted logic	Dependent type theory
with simple types	with dependent types
sets (=types) \neq propositions	propositions as mono sets(=types)
propositions as terms	$\mathcal{P}(1)$ classifies mono sets
of the classifier $\mathcal{P}(1)$	up to equiprovability

In both languages

sets \neq subsets subsets of a set A =elements of the powerset of Acomprehension axiom holds In the internal dependent type theory of topoi

```
a proposition P is a monoset:
if we derive P set
and a proof p
p \in Eq(P, w, z) [w \in P, z \in P]
a predicate P(x) is a mono dependent set:
if we derive P(x) set [x \in A]
and a proof p
p \in Eq(P, w, z) [x \in A, w \in P(x), z \in P(x)]
```

similar to HoTT

but in an extensional type theory

What categorical models for the Minimalist Foundation?

a brief recap of why developing

the Minimalist Foundation

to formalize constructive mathematics

Plurality of constructive foundations \Rightarrow need of a minimalist foundation

	classical	constructive
	ONE standard	NO standard
impredicative	Zermelo-Fraenkel set theory	finternal theory of topoi Calculus of Inductive Constructions
predicative	Feferman's explicit maths	Aczel's Constructive Zermelo-Fraenkel set th. Martin-Löf's type theory Feferman's constructive expl. maths
	K	
	what common	core ??

Need of a MINIMALIST FOUNDATION

Plurality of constructive foundations (often mutual incompatible) ↓ Need of a core foundation where to find common proofs and doing constructive REVERSE mathematics!!

our (M.-Sambin's proposal): adopt the MINIMALIST FOUNDATION

from [M.-Sambin'05], [M.09]

Plurality of constructive foundations \Rightarrow need of a minimalist foundation

	classical	constructive
	ONE standard	NO standard
impredicative	Zermelo-Fraenkel set theory	finternal theory of topoi Calculus of Inductive Constructions
predicative	Feferman's explicit maths	Aczel's Constructive Zermelo-Fraenkel set th. Martin-Löf's type theory Feferman's constructive expl. maths
×		
	the MINIMALIST FOUNDATI	ON is a common core

What foundation for constructive mathematics?

(j.w.w. G. Sambin)

a FORMAL Constructive Foundation should include

our notion of constructive foundation

a three-level foundation

= a two-level foundation + a realizability level

	PURE	extensional	el (used by mathen	naticians to do their proofs)
	Foundation	↓ inte	reted via a QUOTIENT	model
		intensional l	el (language of com	puter-aided formalized proofs)
L	\downarrow			
	realiza	bility level	sed by computer scient	ists to extract programs)

our notion of constructive foundation employs different languages

language of (LOCAL) AXIOMATIC SET THEORY	for extensional level
language of CATEGORY THEORY	algebraic structure
	to link intensional/extensional levels
	via a quotient completion
language of TYPE THEORY	for intensional level
computational language	for realizability level

the pure TWO-LEVEL structure of the Minimalist Foundation

from [Maietti'09]

- its intensional level
 - = a PREDICATIVE VERSION of the Calculus of Inductive Constructions
 - = a FRAGMENT of Martin-Löf's intensional type theory

its extensional level
 is a PREDICATIVE LOCAL set theory
 (NO choice principles)

we use CATEGORY THEORY

to express the link between extensional/intensional levels:

use

notion of ELEMENTARY QUOTIENT COMPLETION

(in the language of CATEGORY THEORY)

relative to a suitable Lawvere's doctrine

in:

[M.E.M.-Rosolini'13] "Quotient completion for the foundation of constructive mathematics", Logica Universalis

[M.E.M.-Rosolini'13] "Elementary quotient completion", Theory and Applications of Categories

see Fabio Pasquali's talk

What realizability level for MF?

Martin-Löf's type theory

or

an extension of Kleene realizability

of intensional level of MF+ Axiom of Choice + Formal Church's thesis

as in

H. Ishihara, M.E.M., S. Maschio, T. Streicher

Consistency of the Minimalist Foundation with Church's thesis and Axiom of Choice in *AML* 2018.

Differences with Martin-Löf's type theory

 Both levels of MF are
 dependent type theories

 based on intensional/extensional versions

 of Martin-Löf's type theory

 (for short MLTT)

but with remarkable differences:

intensional level of MF	MLTT
distinction sets/collections	all types are sets
primitive propositions	propositions-as-sets
distinction between small propositions	
and propositions	
elimination of propositions	general elimination
only towards propositions	
NO rule/axiom of unique choice	YES rule/axiom of unique choice
NO rule/axiom of choice	YES rule/axiom of choice
universe of small propositions	universe of small sets

Differences between intensional/extensional levels of MF

Both levels of **MF** in [M'09]

are dependent type theories

How do they differ??

intensional level of MF	extensional level of MF
universe of small propositions	power-collection of subsets of 1
universe of small propositional functions	powercollection of a set
on a set	
proof-relevant propositions	proof-irrelevant propositions
Martin-Löf's constructors on sets	Martin-Löf's constructors on sets
with only β -conversions	with eta and η -conversions
proof-relevant Identity type	proof-irrelevant Identity type
eliminating only towards propositions	à la Martin-Löf
decidable definitional equality	undecidable definitional equality
	effective quotient sets

Differences topoi/extensional level of MF

They both are

both are local set theory

including

extensional Martin-Löf's 1st-order constructors of sets

dependent type theory of topoi in [M'05]	extensional level of MF in [M'09]
all types are sets	distinction sets/collections
propositions as mono sets	primitive propositions/predicates
	small propositions/propositions
YES axiom/rule of unique choice	NO axiom/rule of unique choice

two notions of function in MF

a *primitive notion* of type-theoretic function $f(x) \in B \ [x \in A]$

 \neq (syntactically)

notion of functional relation

 $\forall x \in A \exists ! y \in B R(x, y)$

 \Rightarrow NO axiom of unique choice in MF

Axiom of unique choice

 $\forall x \in A \exists ! y \in B \ R(x, y) \longrightarrow \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$

turns a functional relation into a type-theoretic function.

 \Rightarrow identifies the two distinct notions...

Essence of the extensional level of MF

the extensional level of MF

had been designed

as a minimalist and predicative version

of the internal dependent type theory

of topoi in [M'05]

which we know is a local set theory from [Bell'88]

by adopting the distinction small maps within a category

from Algebraic Set Theory in [Joyal-Moerdijk'95]

What is the algebraic set theory for the intensional level of MF?

Cartmell's contextual categories	=	algebraic axiomatization
		adapted to the intensional level
		of MF in [M.'09]

Notion of categorical model for the extensional level of MF

a minimalist and predicative generalization

of the notion of elementary topos

Minimalist Algebraic Local Set theory	Algebraic Set Theory
= minimalist predicative elementary topos	
= MF-topos (for short)	
ambient category of collections	ambient category of collections
small maps defined	small maps defined
via Benabou's fibrations	via axioms
with primitive fibrations	
for propositions	
and small propositions	
universe via a classifier object	universe via a classifier object
which is a collection	which is <mark>small</mark>
	for IZF, ZF

ENTITIES in the Minimalist Foundation

are represented by

a MF-topos defined as
a *finite limit* category of collections *C*together with three fibrations à la Benabou over *C*representing the other types

Minimalist Elementary topos

A **MF-Elementary topos** is a tuple of full sub-fibered categories of the codomain fibration of a lex category C (meant to be collections)

$$(\mathcal{C}, \pi_{set}, \pi_{prop}, \pi_{sprop})$$

where all the inclusion are cartesian FULL embeddings modelling MF-types.

examples of MF-elementary toposes

- The syntactic one from the extensional level of **MF** (pure minimalist one!)
- A predicative version of Hyland's Effective Topos (next talk) (with unique choice).
- the setoid model over
 Martin-Löf's type theory with one universe (with unique choice)

More examples of **MF**-toposes...??

We need to make a

minimalist and predicative tripos-to-topos construction

via the FREE ALGEBRAIC construction

called Elementary Quotient Completion of an Elementary doctrine

introduced in

[M.-Rosolini'13] "Quotient completion for the foundation of constructive mathematics", Logica Universalis

[M.-Rosolini'13] "Elementary quotient completion", Theory and Applications of Categories.

see Fabio Pasquali's talk

the Elementary quotient completion

gives an algebraic axiomatization of the quotient/setoid model

used to interpret the extensional level of MF

into its intensional one

in [M'09]

in terms of its universal properties.

Future work

- Relate our notion of minimalist predicative version of topos

 i.e. the notion of MF-Elementary topos
 to Moerdijk-Palmgren-van den Berg's notion of predicative topos
 and to algebraic set theory for CZF.
- Build a **boolean MF** topos
 - with no unique choice
 - in one of Feferman's predicative theories.
- Investigate peculiar aspects of Homotopy Type Theory in MF:
 look for weak factorization systems within the intensional level of MF.