
A Common Notation System for
the Lambda-Calculus and Combinatory Logic

Masahiko Sato
Graduate School of Informatics, Kyoto University

The Second Workshop on
Mathematical Logic and its Applications

Kanazawa
March 9, 2018

What are the Lambda-Calculus and Combinatory Logic?

The Preface of “Lambda-Calculus and Combinators, an
Introduction” by J.R. Hindley and J.P. Seldin says:

The λ-calculus and combinatory logic are two systems of logic
which can also serve as abstract programming languages. They
both aim to describe some very general properties of programs that
can modify other programs, in an abstract setting not cluttered by
details. In some ways they are rivals, in others they support each
other.

In this talk, I will argue that they are, in fact, one and the same
calculus.

What are the Lambda-Calculus and Combinatory Logic?

The Preface of “Lambda-Calculus and Combinators, an
Introduction” by J.R. Hindley and J.P. Seldin says:

The λ-calculus and combinatory logic are two systems of logic
which can also serve as abstract programming languages. They
both aim to describe some very general properties of programs that
can modify other programs, in an abstract setting not cluttered by
details. In some ways they are rivals, in others they support each
other.

In this talk, I will argue that they are, in fact, one and the same
calculus.

What are the Lambda-Calculus and Combinatory Logic?

The Preface of “Lambda-Calculus and Combinators, an
Introduction” by J.R. Hindley and J.P. Seldin says:

The λ-calculus and combinatory logic are two systems of logic
which can also serve as abstract programming languages. They
both aim to describe some very general properties of programs that
can modify other programs, in an abstract setting not cluttered by
details. In some ways they are rivals, in others they support each
other.

In this talk, I will argue that they are, in fact, one and the same
calculus.

History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.

History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.

History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.

Today’s Key Phrases

Semantics of syntax

What you see is (not) what you get

Today’s Key Phrases

Semantics of syntax

What you see is (not) what you get

Today’s Key Phrases

Semantics of syntax

What you see is (not) what you get

The syntax of the Lambda Calculus and Combinatory Logic

X ::= x, y, z, · · ·
M,N ∈ Λ ::= x | λxM | (M N)0

M,N ∈CL ::= x | I | K | S | (M N)0

(M N)0 stands for the application of the function M to its
argument N . It is often written simply MN , but we will always
use the notation (M N)0 for the application.

the Lambda Calculus

M,N ∈ Λ ::= x | λxM | (M N)0

λxM stands for the function obtained from M by abstracting x
in M .

β reduction rule

(λxM N)0 → [x := N]M

Example

(λxx M)0 → [x := M]x = M

((λxyx M)0 N)0 → ([x := M]λyx N)0 = (λyM N)0

→ [y := N]M = M

Combinatory Logic

M,N ∈ CL ::= x | I | K | S | (M N)0

Weak reduction rules

(I M)0 →M

((K M)0 N)0 →M

(((S M)0 N)0 P)0 → ((M P)0 (N P)0)0

These rules suggest the following identities.

I = λxx

K = λxyx

S = λxyz((x z)0 (y z)0)0

By this identification, every combinatory term becomes a lambda
term. Moreover, the above rewriting rules all hold in the lambda
calculus.

Combinatory Logic (cont.)

What about the converse direction? We can translate every
lambda term to a combinatory term as follow.

x∗ = x

(λxM)∗ = λ∗xM
∗

((M N)0)
∗

= (M∗ N∗)0

We used λ∗ : X× CL→ CL above, which we define by:

λ∗xx := I

λ∗xy := (K y)0 if x 6= y

λ∗x(M N)0 := ((S λ∗xM)0 λ∗xN)0

Combinatory Logic (cont.)

The abstraction operator λ∗ enjoys the following property.

(λ∗xM N)0 → [x := N]M

So, CL can simulate the β-reduction rule of the λ-calculus.
However, the simulation does not provide isomorphism. Therefore,
for example, the Church-Rosser property for CL does not imply the
CR property for the λ-calculus.

Recall the syntax of Λ and CL.

X ::= x, y, z, · · ·
M,N ∈ Λ ::= x | λxM | (M N)0

M,N ∈CL ::= x | I | K | S | (M N)0

Differences between λ-calculus and Combinatory Logic

In combinatory logic, if M is a normal term, then (S M)0 is
also normal.
But, in the λ-calculus, it can be simplified as follows:

(S M)0 → λyz((M z)0 (y z)0)0.

This means that the λ-calculus has a finer computational
granularity.

While variables are indispensable in the definition of closed
λ-terms, closed CL-terms can be constructed without using
variables.

In Λ we cannot avoid the notion of bound variables, but we
don’t have the notion in CL.

Our Claim

Our claim is that, albeit the differences in the surface syntax of
λ-calculus and Combinatory Logic, they are actually one and the
same calculus (or algebra) which formalizes the abstract concept of
computable function.

We reconcile the diffrences in the syntax by introducing a common
syntactic extesion of the two calculi.

Our Claim

Our claim is that, albeit the differences in the surface syntax of
λ-calculus and Combinatory Logic, they are actually one and the
same calculus (or algebra) which formalizes the abstract concept of
computable function.

We reconcile the diffrences in the syntax by introducing a common
syntactic extesion of the two calculi.

Church’s syntax and Quine-Bourbaki notation (1)

λxλy(λz(z x)0 (x y)0)0

λx

λy

@

@

yx

λz

@

xz

λ

λ

@

@λ

@

Church’s syntax and Quine-Bourbaki notation (2)

λy(λz(z x)0 (x y)0)0

λy

@

@

yx

λz

@

xz

λ

@

@

x

λ

@

x

Quine-Bourbaki notation and de Bruijn notation

λ

λ

@

@λ

@

λ

λ

@

@

01

λ

@

20

Generalized de Bruijn notation (1)

λ1

λ2

@0

@0

01

λ3

@0

20

λ1

λ2

@0

@0

01

@1

λ3

2

λ3

0

λ1

@1

@1

λ2

0

λ2

1

@2

λ2

λ3

2

λ2

λ3

0

Generalized de Bruijn notation (2)

λ1

λ2

@0

@0

01

@1

λ3

2

λ3

0

λ1

@1

@1

λ2

0

λ2

1

@2

λ2

λ3

2

λ2

λ3

0

@2

@2

λ1

λ2

0

λ1

λ2

1

@3

λ1

λ2

λ3

2

λ1

λ2

λ3

0

Nameless binder and distributive law

λ(D E)n = (λD λE)n+1

Generalized Church’s syntax (1)

λx

λy

@0

@0

yx

λz

@0

xz

λx

λy

@0

@0

yx

@1

λz

x

λz

z

λx

@1

@1

λy

y

λy

x

@2

λy

λz

x

λy

λz

z

Generalized Church’s syntax (2)

λx

λy

@0

@0

yx

@1

λz

x

λz

z

λx

@1

@1

λy

y

λy

x

@2

λy

λz

x

λy

λz

z

@2

@2

λx

λy

y

λx

λy

x

@3

λx

λy

λz

x

λx

λy

λz

z

Distributive Law: λx(D E)n = (λxD λxE)n+1.

α-reduction
λx

λy

@0

@0

yx

λz

@0

xz

@2

@2

λx

λy

y

λx

λy

x

@3

λx

λy

λz

x

λx

λy

λz

z

@2

@2

λ

I0

I1

@3

I2λ

λ

I0

λxx→α I0, λxλyx→α I1, λxλyλzx→α I2, . . .

λxIk →α λIk, λxλIk →α λλIk, λxλλIk →α λλλIk, . . .

α-reduction rules can compute α normal form.
To achieve this, we must extend Church’s syntax!

Common extension of lambda calculus and combinatory logic

Definition (The datatypes M, Λ and CL)

M,N ∈ M ::= x | Ik | λxM | λM | (M N)i (i, k ∈ N)

M,N ∈ Λ ::= x | λxM | (M N)0

M,N ∈CL ::= x | I | K | S | (M N)0

Combinators I, K and S are definable in M as abbreviations:

I := I0

K := I1

S := ((I2 λλI0)3 (λI1 λλI0)3)
3

M as an extension of combinatory logic
In order to make

M,N ∈ M ::= x | Ik | λxM | λM | (M N)i

an extension of combinatory logic, we embedded the S combinator
in M by the following informal computation.

S = λxyz((x z)0 (y z)0)0

= ((λxyzx λxyzz)3 (λxyzy λxyzz)3)
3

= ((I2 λλI0)3 (λI1 λλI0)3)
3

However, Atsushi Igarashi noted that S may also be computed as
follows (using η-conversion):

S = λxyλz((x z)0 (y z)0)0

= λxy(λz(x z)0 λz(y z)0)
1

= λxy(x y)1

= (λxyx λxyy)3 = (K λI)3

Definition (One step α-reduction on M)

λxλ
iIk →1α λ

i+1Ik
E1

λxλ
ix→1α Ii

E2
x 6= y

λxλ
iy →1α λ

i+1y
E3

λ∗(M N)i →1α (λ∗M λ∗N)i+1 D
M →1α M

′

λ∗M →1α λ∗M
′ C1

M →1α M
′

(M N)i →1α (M ′ N)i
C2

N →1α N
′

(M N)i →1α (M N ′)i
C3

Definition (α-nf)

M is an α-nf if M cannot be simplified by one step α-reduction.

Example

This example shows how the variable-binders λx and λy are
eliminated by one step α-reductions.

λxλy(y x)0 →1α λx(λyy λyx)1

→1α λx(I λyx)1

→1α λx(I λx)1

→1α (λxI λxλx)2

→1α (λI λxλx)2

→1α (λI K)2

Remark
Every M ∈ M can be reduced to a unique α-nf, and we will write
Mα for it.

The datatype L

We will write L for the following subset of M.

L := {M ∈ M |M is an α-nf}

We can also define L directly by the following grammar (inductive
defitnition).

Definition (The datatypes T and L)

t ∈T ::= λiIk | λix
M,N ∈L ::= t | (M N)i

Elements of T are called threads.

L as a Combinatory Logic

Definition (The datatypes T and L)

t ∈T ::= λiIk | λix
M,N ∈L ::= t | (M N)i

By observing that

1 The fresh binder λ is a disguised form of K.

2 In+1 = λx(K Knx)0 = (λxK λxKnx)1 = ((K K)0 In)
1

we can replace the above definition by the following definition.

Definition (The datatype L)

M,N ∈ L ::= x | I | K | (M N)i

α-reduction

Definition (α-reduction on M and α-equality)

M0 →1α M1 M1 →1α M2 · · · Mn−1 →1α Mn

M0 →α Mn

When we have M0 →α Mn by this rule, we say that M0

α-reduces to Mn in n steps.

M →α P N →α P
M =α N

=α is a decidable equivalence relation

Theorem
Given any M-term M , there uniquely exists an N such that
M →α N and N is an α-nf.

Remark

1 (−)α : M→ M is idempotent, i.e., (Mα)α = Mα and
image of (−)α is L.

2 For any M ∈ M, M =α Mα.

3 For any M ∈ M, M = Mα iff M ∈ L.

4 M =α N iff Mα = Nα.

Thus Mα is a natural representative of the equivalence class
{N ∈ M | N =α M} containing M .

Moreover, we can think of

(−)α : M→ L

as a semantic function which translates M-terms to L-terms. In
other words M extends L by providing abbreviations (macros,
syntax sugar) for L terms.

Abstraction operator in L
In L, we can introduce the abstraction operation:

λ∗ : X× L→ L

as a macro as follows.

λ∗xλ
iIk := λi+1Ik

λ∗xλ
ix := Ii

λ∗xλ
iy := λi+1y if x 6= y

λ∗x(M N)n := (λ∗xM λ∗xN)n+1

Recall that, for CL, it was defined by:

λ∗xx := I

λ∗xy := (K y)0 if x 6= y

λ∗x(M N)0 := ((S λ∗xM)0 λ∗xN)0

Conclusion: M and L

We may think of M as a common notation system for both
λ-calculus and Combinatory Logic, and its sublanguage L as a
notation system for the pure Combinatory Logic.

M,N ∈M ::= x | Ik | λxM | λM | (M N)i

t ∈ T ::= λiIk | λix
M,N ∈ L ::= t | (M N)i

In L we can have the best of both λ-calculus and Combinatory
Logic. For example, substitution is always capture free, and proof
of CR for L easily implies proof of CR for M (and hence for Λ).

Height of L-terms

Definition (Height (Ht) of L-terms)

Ht(λiIk) := i+ k + 1

Ht(λix) := i

Ht((M N)i) := min{i,Ht(M),Ht(N)}

Instantiation

Definition (Instantiation of threads at level n)

If t ∈ Tn+1 and u ∈ Tn, then 〈t u〉n can be computed by the
following equations.

〈λiIk λj I`〉n :=

λi−1Ik if n < i,

λj+kI` if n = i ≤ j,
λj I`+k if n = i > j,

λiIk−1 if n > i.

〈λiIk λjx〉n :=

λi−1Ik if n < i,

λj+kx if n = i,

λiIk−1 if n > i.

〈λix t〉n := λi−1x

Instantiation at level n
Define lift ↑kn :Ln → Ln+k by

↑kn λ
j I` :=

{
λj+kI` if n ≤ j,
λj I`+k if n > j.

↑kn λ
jx := λj+kx

↑kn (M N)j := (↑kn M ↑kn N)j+k.

Definition (Instantiation at level n)

If M ∈ Ln+1 and P ∈ Ln, then 〈M P 〉n is defined by the
following equations.

〈λiIk P 〉n :=

λi−1Ik if n < i,

↑kn P if n = i,

λiIk−1 if n > i.

〈λix P 〉n := λi−1x.

〈(M N)i+1 P 〉n := (〈M P 〉n 〈N P 〉n)i.

Acknowledgement

We thank the Japan Society for the Promotion of Science (JSPS),
Core-to-Core Program (A. Advanced Research Networks) for
supporting the research.

