A remark on predicate extensions of intuitionistic logic

Nobu-Yuki Suzuki¹

Department of Mathematics, Faculty of Science, Shizuoka University

Second Workshop on Mathematical Logic and its Applications Mar. 8, 2018 (Kanazawa, Japan)

N.-Y. Suzuki (Shizuoka University)

¹ The author thanks the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) and Grand-in-Aid for Scientific Research (C) No.16K05252 for supporting the research.

Hallmarks of Constructive Reasoning: Disjunction and Existence Properties

Definition

A logic **L** is said to have the disjunction property (DP), if for every $A \lor B$: $\mathbf{L} \vdash A \lor B \Rightarrow \mathbf{L} \vdash A$ or $\mathbf{L} \vdash B$.

A logic **L** is said to have the existence property (EP), if for every $\exists xA(x)$: $\mathbf{L} \vdash \exists xA(x) \Rightarrow$ there exists a v such that $\mathbf{L} \vdash A(v)$.

• DP and EP are regarded as distinguishing features and characteristics of constructivity of **Int**.

$$\exists x A(x) = \bigvee_{u \in U} A(u)$$

Predicate extensions of intuitionistic logic

We consider Predicate Extensions of Intuitionistic logic (PEI's). Int: Intuitionistic predicate logic,

Definition

(1) The propositional part of L is the set {A : A is a propositional formula and provable in L}.
(2) L is said to be a PEI, if its propositional part coincides with that of Int.

By the definition, PEI's must resemble **Int** in some logical characters;

and PEI's must NOT resemble **Int** in other logical characters.

Int is the logic of **constructivity**.

We deal with two properties related to constructivity of Int ;

- Disjunction property (DP),
- Existence property (EP).

Relations in PEI's?

		DP	
		Yes	No
EP	Yes	Int etc.	Int + CD
			$+GJ \lor Z$ etc.
			S. 2013(?)
	No	Int $+ F$ etc.	$Int + F + Lin^*$
		Nakamura ('83),	etc.
		Minari ('83-'86)	

$$\begin{array}{lll} CD: & \forall x(p(x) \lor q) \to \forall xp(x) \lor q \ , \\ GJ: & \bigwedge_{i=0}^{2} \left((q_{i} \to \bigvee_{j \neq i} q_{j}) \to \bigvee_{j \neq i} q_{j} \right) \to \bigvee_{i=0}^{2} q_{i} \ , \\ Z: & \exists xp(x) \to \forall xp(x) \ . \\ F: & \exists x(p(x) \to \forall yp(y)) \ , \\ Lin^{*}: & \forall x \forall y((p(x) \to p(y)) \lor (p(y) \to p(x))) \end{array}$$

How Many PEI's?

		DP	
		Yes	No
EP	Yes		
		2^{ω}	2^{ω}
	No		
		2^{ω}	2^{ω}

N.-Y. Suzuki (Shizuoka University)

Predicate extensions of int. logic

By constructing a concrete sequence of axiom schemata

$$X_i$$
 $(i < \omega)$

such that;

3. for
$$I \subseteq \omega$$
, $Int + \{X_i : i \in I\}$ enjoys DP.

No.1.

A: a finite & strongly compact Heyting algebra; the 2nd greatest = \star_A . Take a finite set $\{p_a : a \in A\}$ of propositional variables.

$$\delta(\mathbf{A}) = \{ p_{a\cup_{\mathbf{A}}b} \equiv (p_a \lor p_b), p_{a\cap_{\mathbf{A}}b} \equiv (p_a \land p_b) ; a, b \in \mathbf{A} \}$$
$$\bigcup \{ p_{a\to_{\mathbf{A}}b} \equiv (p_a \to p_b), p_{a\to_{\mathbf{A}}0_{\mathbf{A}}} \equiv (\neg p_a) ; a, b \in \mathbf{A} \},$$
$$J(\mathbf{A}) : \ (\bigwedge \delta(\mathbf{A})) \to p_{\star_{\mathbf{A}}},$$
$$QJ(\mathbf{A}) : \ \exists v \{ (\bigwedge \delta(\mathbf{A})) [p_{\star_{\mathbf{A}}} := F] \to (P(v) \to \forall y P(y)) \}.$$

$$(F: \exists x(P(x) \rightarrow \forall yP(y))).$$

Lemma

If S is a set of finite and strongly compact Heyting algebras having at least three elements, then $Int + {QJ(A) : A \in S}$ is a PEI lacking EP.

No.2.

Fact (cf. Wroński '73)

B: a Heyting algebra, $E(\mathbf{B})$: the propositional logic determined by **B**.

 $E(\mathbf{B}) \nvDash J(\mathbf{A})$ if and only if **A** is embeddable into a quotient algebra of **B**.

By making use of the algebraic Kripke sheaf semantics (S. '99), we have:

Lemma

A, B: finite and strongly compact Heyting algebras in which there exist exactly three elements having no incomparable elements.

 $L(\mathcal{K}(\mathbf{B})) \nvDash QJ(\mathbf{A})$ if and only if **A** is embeddable into a quotient alg. of **B**.

 $\mathcal{K}(\mathbf{B})$: a special algebraic Kripke sheaf determined by \mathbf{B} , $\mathcal{L}(\mathcal{K}(\mathbf{B}))$: the super-intuitionistic predicate logic determined by $\mathcal{K}(\mathbf{B})$.

Suppose we have a sequence $\{\mathbf{A}_i\}_{i<\omega}$ of Heyting algebras such that

- each **A**_i is a finite and strongly compact Ha in which there exist exactly three elements having no incomparable elements,
- for $i, j < \omega$ $(i \neq j)$, A_i is not embeddable into any quotient alg. of A_j .

Lemma

For each $i < \omega$, $Int + \{QJ(\mathbf{A}_j); j \neq i\} \not\ni QJ(\mathbf{A}_i)$.

No.3.

Definition

 $(\mathbf{M}_i, D_i, \models_i)$ (i = 1, 2); Kripke models with the least elements 0_1 and 0_2 . The pointed join model of them:

Lemma

If A_i is not true in $(\mathbf{M}_i, D_i, \models_1)$ (i = 1, 2), then $A_1 \lor A_2$ is not true in the pointed join model of them.

No.3. (Cont'd)

Definition

A formula A is axiomatically true in a Kripke model, if every instance of A is true in it.

Lemma

If the axiomtic truth of A is preserved under pointed-join-model construction, then Int + A has DP.

Lemma

A: a finite and strongly compact Heyting algebra **A** with $|\mathbf{A}| \ge 3$. The axiomtic truth of $QJ(\mathbf{A})$ is preserved under pointed-join-model construction. Thus, $\mathbf{Int} + QJ(\mathbf{A})$ has DP.

Completing the proof

By modifying Wroński('73)'s technique, we constructed a concrete sequence $\{\mathbf{A}_i\}_{i < \omega}$ of Heyting algebras such that

- each A_i is a finite and strongly compact Ha in which there exist exactly three elements having no incomparable elements,
- for $i, j < \omega$ $(i \neq j)$, A_i is not embeddable into any quotient alg. of A_j ,

Therefore, we have a concrete sequence of axiom schemata

$$QJ(\mathbf{A}_i) \ (i < \omega)$$

such that;

- 1. for $I \subseteq \omega$, $Int + \{QJ(\mathbf{A}_i); i \in I\}$ is a PEI lacking EP,
- 2. for each $i < \omega$, $Int + \{QJ(\mathbf{A}_j); j \neq i\} \nvDash QJ(\mathbf{A}_i)$,

► ⇒ For $I, J \subseteq \omega$, I = J if and only if $Int + \{QJ(\mathbf{A}_k); k \in I\} = Int + \{QJ(\mathbf{A}_k); k \in J\}.$

3. for
$$I \subseteq \omega$$
, $Int + \{QJ(\mathbf{A}_i) ; i \in I\}$ enjoys DP.

Concluding Remarks

$$?? \exists x A(x) = \bigvee_{u \in U} A(u) ??$$

- We constructed a recursively enumerable set of concrete axiom schemata. By adding these schemata to Int, we obtained a continuum of PEI's each of which has DP but lacks EP.
- We have four continua of PEI's:
 - "with EP and DP,"
 - "without EP and DP,"
 - "with DP but without EP," and
 - "with EP but without DP."

Other than the last one, Three of them can be obtained by constructing a recursively enumerable set of concrete axioms.

But for the last continuum: "with EP but without DP," we do not have such a set of axiom schemata, as yet.

References

- Minari, P., Disjunction and existence properties in intermediate predicate logics, in: Atti del Congresso Logica e Filosofia della Scienza, oggi. San Gimignano,dicembre 1983. Vol.1– Logica, 1986, pp. 7–11, CLUEB, Bologna.
- Nakamura, T., *Disjunction property for some intermediate predicate logics*, Reports on Mathematical Logic, 15(1983), 33–39.
- Suzuki, N.-Y., Algebraic Kripke sheaf semantics for non-classical predicate logics, Studia Logica 63(1999), 387–416.
- Suzuki, N.-Y., A Negative Solution to Ono's Problem P52: Existence and Disjunction Properties in Intermediate Predicate Logics, to appear.
- Wroński, A., *Intermediate logics and the disjunction property*, Reports on Mathematical Logic 1(1973), 39–51.