# Hyper Natural Deduction for Gödel Logic a natural deduction system for parallel reasoning ${ }^{1}$ 

Norbert Preining

Accelia Inc., Tokyo<br>Joint work with Arnold Beckmann, Swansea University

MLA 2018 Kanazawa, March 2018

[^0]
## Motivation

- Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248


## Motivation

- Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248
- The second, deeper objective of this paper is to contribute towards a better understanding of the notion of logical consequence in general, and especially its possible relations with parallel computations


## Motivation

- Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248
- The second, deeper objective of this paper is to contribute towards a better understanding of the notion of logical consequence in general, and especially its possible relations with parallel computations
- We believe that these logics [...] could serve as bases for parallel $\lambda$-calculi.


## Motivation

- Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248
- The second, deeper objective of this paper is to contribute towards a better understanding of the notion of logical consequence in general, and especially its possible relations with parallel computations
- We believe that these logics [...] could serve as bases for parallel $\lambda$-calculi.
- The name "communication rule" hints, of course, at a certain intuitive interpretation that we have of it as corresponding to the idea of exchanging information between two multiprocesses: [...]


## Motivation

- Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248
- The second, deeper objective of this paper is to contribute towards a better understanding of the notion of logical consequence in general, and especially its possible relations with parallel computations
- We believe that these logics [...] could serve as bases for parallel $\lambda$-calculi.
- The name "communication rule" hints, of course, at a certain intuitive interpretation that we have of it as corresponding to the idea of exchanging information between two multiprocesses: [...]
- General aim: provide Curry-Howard style correspondences for parallel computation, starting from logical systems with good intuitive algebraic / relational semantics.

Setting the stage

Setting the stage
(II)

Setting the stage
(II)

Setting the stage


## Setting the stage


$\Leftrightarrow$ ND
Gentzen '34

## Setting the stage


introduction rule
$\frac{A \quad B}{A \wedge B}$
elimination rule

$$
\frac{A \wedge B}{A}
$$

## Setting the stage


introduction rule

$$
\begin{aligned}
& A \quad B \\
& \hline A \wedge B \\
& \frac{[A]}{B \rightarrow B}
\end{aligned}
$$

elimination rule

$$
\frac{A \wedge B}{A}
$$

$$
\frac{A \quad A \rightarrow B}{B}
$$

## Setting the stage


introduction rule
$\frac{A \quad B}{A \wedge B}$
$\frac{\frac{[A]}{B}}{A \rightarrow B}$
elimination rule

$$
\frac{A \wedge B}{A}
$$

$$
\frac{A \quad A \rightarrow B}{B}
$$

normalisation

## Setting the stage

$$
\text { (II) } \Leftrightarrow \text { LJ } \Leftrightarrow \text { ND }
$$

Gentzen '34

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { LJ } \Leftrightarrow \text { ND }
$$

Sequent<br>$\Gamma \Rightarrow A$

Axiom
$A \Rightarrow A$


## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { LJ } \Leftrightarrow \text { ND }
$$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Sequent } \\
\Gamma \Rightarrow A
\end{array} & \begin{array}{c}
\text { Rules } \\
\\
\end{array} \begin{array}{c}
\text { Axiom } \\
\\
\\
\text { (cut) } \frac{\Gamma \Rightarrow A \Rightarrow A}{\Gamma, \Pi \Rightarrow B} \\
\end{array} \\
\end{array}
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { LJ } \Leftrightarrow \text { ND }
$$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Sequent } \\
\Gamma \Rightarrow A
\end{array} & \begin{array}{c}
\text { Rules } \\
A \Rightarrow A
\end{array} \frac{\Gamma \Rightarrow A}{\Gamma, \Delta \Rightarrow A} \\
& \text { (cut) } \frac{\Gamma \Rightarrow A \quad \Pi, A \Rightarrow B}{\Gamma, \Pi \Rightarrow B} \\
\text { cut elimination }- \text { consistency }
\end{array}
$$

## Setting the stage



Every proof system hides a model of computation.

## Setting the stage

$$
\text { (II) } \Leftrightarrow \text { NJ } \Leftrightarrow \text { ND } \stackrel{\text { Curry Howard }}{\Leftrightarrow} \text { ( }
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { NJ } \Leftrightarrow \stackrel{\text { Curry Howard }}{\Leftrightarrow}
$$

Gödel '32, Dummett '59
GL

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { NJ } \Leftrightarrow \text { ND } \stackrel{\text { Curry Howard }}{\Leftrightarrow}
$$

Gödel '32, Dummett '59

$$
\mathrm{IL}+\operatorname{LIN}(A \rightarrow B) \vee(B \rightarrow A)
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { LJ } \stackrel{\text { ND }}{\text { Curry Howard }} \Leftrightarrow
$$

Gödel '32, Dummett '59

$$
\mathrm{IL}+\operatorname{LIN}(A \rightarrow B) \vee(B \rightarrow A)
$$

Logic of Linear Kripke Frames

## Setting the stage

$$
\begin{aligned}
& \text { IL. } \Leftrightarrow \text { LU } \Leftrightarrow \text { ND } \stackrel{\text { Curry Howard }}{\Leftrightarrow} \text { (1) } \\
& \text { GL. } \Leftrightarrow \text { ALK } \\
& \text { Avron' } 91
\end{aligned}
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { NJ } \Leftrightarrow \text { ND } \stackrel{\text { Curry Howard }}{\Leftrightarrow}
$$

GL) $\Leftrightarrow$ HLK
Hypersequent

$$
\Gamma_{1} \Rightarrow \Delta_{1}|\ldots| \Gamma_{n} \Rightarrow \Delta_{n}
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { (JJ } \Leftrightarrow \stackrel{\text { Curry Howard }}{\Leftrightarrow}
$$

GL) $\Leftrightarrow$ HLK

$$
\frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A}
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { NJ } \Leftrightarrow \stackrel{\text { ND }}{\text { Curry Howard }} \Leftrightarrow
$$

$$
\text { (GL) } \Leftrightarrow \text { HLK (com) } \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A}
$$

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { (JJ } \Leftrightarrow \stackrel{\text { ND }}{\text { Curry Howard }} \Leftrightarrow
$$



Avron '91: Communication between agents

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { LJ } \Leftrightarrow \stackrel{\text { ND }}{\text { Curry Howard }} \Leftrightarrow
$$



Fermüller 'o8: Lorenzen style dialogue games, ...

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { (JJ } \Leftrightarrow \stackrel{\text { ND }}{\text { Curry Howard }} \Leftrightarrow
$$

$$
\text { GL) } \Leftrightarrow \text { HLK } \quad \text { (com) } \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A}
$$

hyper sequent calculi for various logics

## Setting the stage

$$
\text { (IL) } \Leftrightarrow \text { LJ } \Leftrightarrow \stackrel{\text { ND }}{\text { Curry Howard }} \Leftrightarrow
$$

$$
\text { (GL) } \Leftrightarrow \text { HLK (com) } \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A}
$$

## Setting the stage

$$
\text { (II) } \Leftrightarrow \text { NJ } \Leftrightarrow \text { ND } \stackrel{\text { Curry Howard }}{\Leftrightarrow} \text { ( }
$$

$$
\text { GL } \Leftrightarrow \text { HLK }
$$

## Setting the stage

$$
\begin{align*}
& \text { II. } \Leftrightarrow \text { LJ } \Leftrightarrow \text { ND Curry Howard } \\
& \text { GL } \Leftrightarrow \text { HLK } \Leftrightarrow \text { HND }
\end{align*}
$$

## Setting the stage

$$
\begin{aligned}
& \text { IL) } \Leftrightarrow \text { LU } \Leftrightarrow \text { ND Curry Howard }
\end{aligned}(\lambda \text { ? } \Leftrightarrow \text { HL } \Leftrightarrow \text { HD } \Leftrightarrow \text { ? }
$$

## Setting the stage

$$
\begin{aligned}
& \text { (IL) } \Leftrightarrow \text { Lb } \Leftrightarrow \text { Curry Howard } \quad(\lambda \\
& \text { GL } \Leftrightarrow \text { iLK } \Leftrightarrow \text { eND ? } \\
& \text { today's topic }
\end{aligned}
$$

## PREVIOUS WORK

Hirai, FLOPS 2012
A Lambda Calculus for Gödel-Dummett Logics Capturing Waitfreedom

- change of both syntax and semantics
- different calculus


## PREVIOUS WORK

Hirai, FLOPS 2012
A Lambda Calculus for Gödel-Dummett Logics Capturing Waitfreedom

- change of both syntax and semantics
- different calculus

Baaz, Ciabattoni, Fermüller 2000
A Natural Deduction System for Intuitionistic Fuzzy Logic (will be discussed later)

## WISHLIST

Properties we want to have:
(semi) local

- construction of deductions: apply ND inspired rules to extend a HND deductions
- modularity of deductions: reorder/restructure deductions
- analyticity (sub-formula property, ...)


## WISHLIST

Properties we want to have:
(semi) local

- construction of deductions: apply ND inspired rules to extend a HND deductions
- modularity of deductions: reorder/restructure deductions
- analyticity (sub-formula property, ...)
normalisation
- procedural normalisation via conversion steps


## NATURAL Deduction rules

$$
\begin{aligned}
& \wedge-i \frac{A \quad B}{A \wedge B} \wedge-e \frac{A \wedge B}{A} \\
& \vee-i \frac{A \wedge B}{B} \\
& \frac{A \vee B}{A \vee B} \vee-e \frac{A \vee B \quad C}{C} \quad C \\
& \rightarrow-i \frac{B}{A \rightarrow B} \\
& \rightarrow-e \frac{A C B}{B} \\
& \perp_{I} \frac{A \rightarrow B}{A}
\end{aligned}
$$

## Hypersequent Calculus

Hypersequent: $\Gamma_{1} \Rightarrow A_{1}|\ldots| \Gamma_{n} \Rightarrow A_{n}$

## Hypersequent Calculus

Hypersequent: $\Gamma_{1} \Rightarrow A_{1}|\ldots| \Gamma_{n} \Rightarrow A_{n}$ Some rules:

$$
\begin{gathered}
\rightarrow, l \frac{\Gamma \Rightarrow A|\mathcal{H} \quad \Gamma, B \Rightarrow C| \mathcal{H}^{\prime}}{\Gamma, A \rightarrow B \Rightarrow C|\mathcal{H}| \mathcal{H}^{\prime}} \\
\rightarrow, r \frac{\Gamma, A \Rightarrow B \mid \mathcal{H}}{\Gamma \Rightarrow A \rightarrow B \mid \mathcal{H}}
\end{gathered}
$$

## Hypersequent Calculus

Hypersequent: $\Gamma_{1} \Rightarrow A_{1}|\ldots| \Gamma_{n} \Rightarrow A_{n}$
Some rules:

$$
\begin{gathered}
\rightarrow, l \frac{\Gamma \Rightarrow A|\mathcal{H} \quad \Gamma, B \Rightarrow C| \mathcal{H}^{\prime}}{\Gamma, A \rightarrow B \Rightarrow C|\mathcal{H}| \mathcal{H}^{\prime}} \\
\rightarrow, r \frac{\Gamma, A \Rightarrow B \mid \mathcal{H}}{\Gamma \Rightarrow A \rightarrow B \mid \mathcal{H}} \\
\operatorname{com} \frac{\Gamma_{1} \Rightarrow A_{1}\left|\mathcal{H} \quad \Gamma_{2} \Rightarrow A_{2}\right| \mathcal{H}^{\prime}}{\Gamma_{1} \Rightarrow A_{2}\left|\Gamma_{2} \Rightarrow A_{1}\right| \mathcal{H} \mid \mathcal{H}^{\prime}} \\
\text { split } \frac{\Pi, \Gamma \Rightarrow A \mid \mathcal{H}}{\Pi \Rightarrow A|\Gamma \Rightarrow A| \mathcal{H}}
\end{gathered}
$$

## Linearity in LJ

$$
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A)
$$

## Linearity in LJ

$$
\frac{\Rightarrow A \rightarrow B}{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A)}
$$

## Linearity in LJ

$$
\begin{gathered}
\frac{\stackrel{? ? ?}{\Rightarrow}}{\Rightarrow A \rightarrow B} \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A)
\end{gathered}
$$

## Linearity in HLK

$$
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A)
$$

## Linearity in HLK

$$
\begin{gathered}
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
E C
\end{gathered}
$$

## Linearity in HLK

$$
\begin{gathered}
\frac{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow B \rightarrow A}{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow(A \rightarrow B) \vee(B \rightarrow A)} \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
E C
\end{gathered}
$$

## Linearity in HLK

$$
\begin{gathered}
\frac{\Rightarrow A \rightarrow B \mid \Rightarrow B \rightarrow A}{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow B \rightarrow A} \vee-\mathrm{r} \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\mathrm{FC}
\end{gathered}
$$

## Linearity in HLK

$$
\begin{gathered}
\frac{\Rightarrow A \rightarrow B \mid B \rightarrow A}{\Rightarrow A \rightarrow B \mid \Rightarrow B \rightarrow A} \rightarrow-\mathrm{r} \\
\frac{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow B \rightarrow A}{\Rightarrow-\mathrm{r}} \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(C
\end{gathered}
$$

## Linearity in HLK

$$
\begin{gathered}
\frac{\overline{A \rightarrow B \mid B \rightarrow A}}{\Rightarrow A \rightarrow B \mid B \Rightarrow A} \rightarrow-\mathrm{r} \\
\frac{\Rightarrow A \rightarrow B \mid \Rightarrow B \rightarrow A}{\Rightarrow-\mathrm{r}} \\
\frac{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow B \rightarrow A}{(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow(A \rightarrow B) \vee(B \rightarrow A)} \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(\mathrm{r} \\
\Rightarrow \mathrm{r}
\end{gathered}
$$

## Linearity in HLK

$$
\begin{gathered}
\frac{A \Rightarrow A \quad B \Rightarrow B}{A \rightarrow B \mid B \Rightarrow A} \text { com } \\
\frac{\Rightarrow A \rightarrow B \mid B \Rightarrow A}{A \rightarrow-\mathrm{r}} \\
\frac{A \rightarrow B \mid \Rightarrow B \rightarrow A}{\Rightarrow} \rightarrow-\mathrm{r} \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \mid \Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(A \rightarrow B) \vee(B \rightarrow A) \\
\Rightarrow(A \rightarrow r
\end{gathered}
$$

## BCF System

Models hyper sequents in natural deduction by combining deductions in ND with a new operator $\mid$.

## BCF System

Models hyper sequents in natural deduction by combining deductions in ND with a new operator $\mid$.
Example linearity: From

$$
\text { From } \frac{\{A\}}{A} \text { and } \frac{\{B\}}{B}
$$

## BCF System

Models hyper sequents in natural deduction by combining deductions in ND with a new operator $\mid$.
Example linearity: From

$$
\begin{array}{lr}
\qquad \begin{array}{lr}
\text { From } & \frac{\{A\}}{A} \text { and } \frac{\{B\}}{B} \\
\text { one derives } & \text { (com) } \frac{\{A\}}{B} \\
\text { (com) } \frac{\text { B }}{A}
\end{array}
\end{array}
$$

## BCF System

Models hyper sequents in natural deduction by combining deductions in ND with a new operator $\mid$.
Example linearity: From

$$
\begin{aligned}
& \text { From } \frac{\{A\}}{A} \text { and } \frac{\{B\}}{B} \\
& \begin{array}{ll}
\text { one derives } & \frac{\{A\}}{\text { (com) } \frac{A}{B}}
\end{array} \quad \text { (com) } \frac{\frac{\{B\}}{A}}{} \\
& \text { then } \quad \begin{array}{l}
\text { (com) } \frac{\{A\}}{B} \\
A \rightarrow B
\end{array} \quad \text { (com) } \frac{\{B\}}{B}{ }^{\frac{A}{A}} \text { etc }
\end{aligned}
$$

## DISCUSSION OF THE BCF SYSTEM

- direct translation from HLK
- inductive definition
- easy to translate proofs back and forth
- normalisation only via translation to HLK


## DISCUSSION OF THE BCF SYSTEM

- direct translation from HLK
- inductive definition
- easy to translate proofs back and forth
- normalisation only via translation to HLK

Not a solution to our problem!

## Our approach to Hyper Natural Deduction

## Our approach to Hyper Natural Deduction

$$
(\mathrm{com}) \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A}
$$

$$
\begin{gathered}
\Gamma \\
\vdots \\
\AA
\end{gathered}
$$

## Our approach to Hyper Natural Deduction

$$
\text { (com) } \begin{array}{ccc}
\Gamma \Rightarrow A & \Delta \Rightarrow B \\
\Gamma \Rightarrow B \mid \Delta \Rightarrow A & \vdots & \Delta \\
& A & \vdots
\end{array}
$$

## Our approach to Hyper Natural Deduction

$$
(\operatorname{com}) \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} \quad \operatorname{com} \frac{\Gamma}{B} \quad \begin{gathered}
\Delta \\
\Gamma
\end{gathered} \quad \begin{gathered}
\text { A } \\
\end{gathered}
$$

## Our approach to Hyper Natural Deduction

$$
(\operatorname{com}) \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} \quad \operatorname{com} \frac{\Gamma}{\frac{A}{B}} \overline{\operatorname{com}} \frac{\Delta}{A}
$$

## Our approach to Hyper Natural Deduction

$$
\begin{aligned}
& \text { (com) } \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} \\
& \operatorname{com} \frac{\Gamma}{} \begin{array}{cc}
B & \Delta \\
\vdots & \vdots \\
\operatorname{com} & \frac{\dot{B}}{A}
\end{array}
\end{aligned}
$$

## Our approach to Hyper Natural Deduction

$$
\begin{array}{cc}
\text { (com) } \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} & \Delta \Rightarrow B \\
\Gamma \Rightarrow B & \operatorname{com} \frac{\Gamma}{B} \overline{\operatorname{com}} \frac{\Delta}{A}
\end{array}
$$

- consider sets of derivation trees
- divide communication (and split) into two dual parts
- search for minimal set of conditions that provides sound and complete deduction system


## Rules of HNGL

Rules for NJ plus

$$
r:^{k} \operatorname{Spt}_{\Gamma, \Delta} \frac{{ }^{k}[\Gamma], \Delta}{A}
$$

## Rules of HNGL

Rules for NJ plus

$$
\begin{gathered}
{ }^{k}[\Gamma], \Delta \\
\vdots \\
:^{k} \operatorname{Spt}_{\Gamma, \Delta} \frac{\dot{A}}{A}
\end{gathered}
$$

$$
r: \operatorname{Com}_{A, B} \frac{\Gamma}{\vdots}
$$

## Rules of HNGL

Rules for NJ plus

$$
r:^{k} \operatorname{Spt}_{\Gamma, \Delta} \frac{{ }^{k}[\Gamma], \Delta}{A}
$$

$$
r: \operatorname{Com}_{A, B} \frac{\Gamma}{\vdots}
$$

$$
r: \operatorname{Ctr} \frac{\left.\left.\begin{array}{cc}
\Gamma & \Delta \\
\vdots & \vdots \\
A & A \\
\hline
\end{array}\right) . \begin{array}{c}
\text { A }
\end{array}\right)}{}
$$

## Rules of HNGL

Rules for NJ plus

$$
r:^{k} \operatorname{Spt}_{\Gamma, \Delta} \frac{{ }^{k}[\Gamma], \Delta}{\vdots}
$$

$$
r: \operatorname{Com}_{A, B} \frac{\dot{A}}{B}
$$

$$
r: \operatorname{Rep} \frac{\Gamma}{\vdots} \frac{\dot{A}}{A}
$$

## Rules of HNGL

Rules for NJ plus

$$
r:^{k} \operatorname{Spt}_{\Gamma, \Delta} \frac{{ }^{k}[\Gamma], \Delta}{A}
$$

$$
r: \operatorname{Com}_{A, B} \frac{\Gamma}{\vdots} \frac{A}{B}
$$



A prederivation is a well-formed derivation tree based on the rules of HNGL.

## Hyper Rules

Applies to $k$ prehyper deductions and produces another prehyper deduction:

$$
\mathbf{h}-r \frac{R_{1} \quad \cdots}{} \frac{R_{k}}{R}
$$

## Hyper RUles

Applies to $k$ prehyper deductions and produces another prehyper deduction:

$$
\mathbf{h}-r \frac{R_{1} \quad \cdots}{} \frac{R_{1}}{R}
$$

Hyper rule $\mathbf{h}-\boldsymbol{r}$ for NJ rule $r$


## Hyper communication rule



## Hyper Splitting rule



## Hyper contraction and repetition rules



## Why THIS VERBOSITY?

Natural deduction, as well as Sequent calculus, define a partial order of rule instances, and any linearisation that agrees with the partial order gives a valid derivation.

## Why THIS VERBOSITY?

Natural deduction, as well as Sequent calculus, define a partial order of rule instances, and any linearisation that agrees with the partial order gives a valid derivation.

In the case of Hyper Natural Deductions we have multiple trees with multiple partial orders, but due to the connections between prederivations via communication rules, the final HNGL does not define a unique derivation order.

## Proof of Linearity - GLC VERSION

$$
C=(A \rightarrow B) \vee(B \rightarrow A),
$$

$$
\begin{gathered}
\operatorname{com} \frac{A \Rightarrow A \quad B \Rightarrow B}{A \Rightarrow B \mid B \Rightarrow A} \\
\rightarrow, r \underset{A \rightarrow B \mid B \Rightarrow A}{\Rightarrow A \rightarrow A} \\
\vee_{1}, r \Rightarrow A \rightarrow B \mid \Rightarrow B \rightarrow A \\
\vee_{2}, r \Rightarrow C \mid \Rightarrow B \rightarrow A \\
E C \xrightarrow[\Rightarrow C \mid \Rightarrow C]{\Rightarrow C}
\end{gathered}
$$

## Proof of Linearity - HNGL version

$$
\begin{array}{rc}
x: \operatorname{Com}_{A, B} \frac{{ }^{1}[A]}{B} & \bar{x}: \operatorname{Com}_{A, B} \frac{{ }^{2}[B]}{A} \\
\vee-i \frac{{ }^{2} \rightarrow-i}{} \frac{A \rightarrow B}{C} & \\
y: \operatorname{Ctr} \frac{B-i \frac{B \rightarrow A}{C}}{} & C
\end{array}
$$

## HNGL DEDUCTION



## Results on HNGL

Theorem
If $A$ is GLC derivable, then $A$ is also HNGL derivable.
Theorem
If A is HNGL derivable, then A is also GLC derivable.
Theorem
The system HNGL is sound and complete for infinitary propositional Gödel logic.

## DISCUSSION

- Hyper rules - derivations are completely in ND style
- Hyper rules mimic HLK/BCF system
- natural style of deduction


## DISCUSSION

- Hyper rules - derivations are completely in ND style
- Hyper rules mimic HLK/BCF system
- natural style of deduction
- but: procedural definition (like BCF system):
- difficult to check whether a given figure forms a proof
- difficult to reason on normalisation (needs reshuffling of proof trees)


## DISCUSSION

- Hyper rules - derivations are completely in ND style
- Hyper rules mimic HLK/BCF system
- natural style of deduction
- but: procedural definition (like BCF system):
- difficult to check whether a given figure forms a proof
- difficult to reason on normalisation (needs reshuffling of proof trees)

We need criteria to check whether a set of trees forms a proof!

Towards an explicit definition

## Proof criteria

What about the following proof part:


EQUIVALENCE CLASSES


## EQUIVALENCE CLASSES



Criterion 1: The sets of trees connected to the sub-trees routed in the predecessors of any non-unary logical rule need to be disjoint.

## ANOTHER CRITERIA

What about this:

$$
\begin{gathered}
x: \operatorname{Com}_{B, A} \frac{\dot{B}}{A} \\
\vdots \\
x: \operatorname{Com}_{F, E} \frac{\dot{F}}{E} \\
x: \operatorname{Com}_{E, F} \frac{\dot{E}}{F} \\
\bar{x}: \operatorname{Com}_{A, B} \frac{\vdots}{B}
\end{gathered}
$$

## ANOTHER CRITERIA

What about this:

$$
\begin{gathered}
x: \operatorname{Com}_{B, A} \frac{\vdots}{A} \\
\vdots: \operatorname{Com}_{F, E} \frac{\vdots}{E} \\
x: \operatorname{Com}_{E, F} \frac{\vdots}{F} \\
\bar{x}: \operatorname{Com}_{A, B} \frac{\vdots}{B}
\end{gathered}
$$

Criterion 2: There is a total order on communication and split labels that is compatible with the order on the branches.

## CANOPY GRAPHS

Two operations on labeled directed graphs:
$\operatorname{Cut}(G, E)$ drops a set of edges from the graph
$\operatorname{Drop}(G, N)$ drops a set of nodes and related edges that are reachable from all nodes labeled with a name in $N$

## CANOPY GRAPHS

Two operations on labeled directed graphs:
$\operatorname{Cut}(G, E)$ drops a set of edges from the graph
$\operatorname{Drop}(G, N)$ drops a set of nodes and related edges that are reachable from all nodes labeled with a name in $N$

Definition
Let $\mathcal{G}=(V, E, N, f)$ be a labeled graph, and let $E^{c} \subseteq E$ be the set of symmetric edges, that is the set of all edges $(r, s) \in E$ where also $(s, r) \in E$. If $\operatorname{Cut}\left(G, E^{c}\right)$ is a disjoint union of trees, we call $\mathcal{G}$ a $C$-graph or canopy graph.

## Motivation of These concepts

Consider the following hyper-sequent derivation:

$$
\begin{array}{r}
\operatorname{com}_{1} \frac{B \Rightarrow B}{\frac{B, B \Rightarrow B}{C, B \Rightarrow A} \quad \operatorname{com}_{2} \frac{C \Rightarrow C}{C, B \Rightarrow C} \quad A \Rightarrow A} \\
\wedge-r \frac{C, B \Rightarrow A \mid A \Rightarrow B}{\operatorname{contr} \frac{C, B \Rightarrow A|C, B \Rightarrow A| A \Rightarrow B \wedge C}{C, B \Rightarrow A \mid A \Rightarrow B \wedge C}} \\
\frac{C C A \Rightarrow C}{\Rightarrow C \rightarrow(B \rightarrow A) \mid \Rightarrow A \rightarrow B \wedge C}
\end{array}
$$

## Motivation of These concepts

Consider the following hyper-sequent derivation:

$$
\begin{array}{r}
\operatorname{com}_{1} \frac{B \Rightarrow B}{\frac{B, B \Rightarrow B}{C, B \Rightarrow A} \quad \operatorname{com}_{2} \frac{C \Rightarrow C}{C, B \Rightarrow C} \quad A \Rightarrow A} \\
\wedge-r \frac{C, B \Rightarrow A \mid A \Rightarrow C}{C, B \Rightarrow A \mid A \Rightarrow B} \\
\operatorname{contr} \frac{C, B \Rightarrow A|C, B \Rightarrow A| A \Rightarrow B \wedge C}{C, B \Rightarrow A \mid A \Rightarrow B \wedge C} \\
\frac{C \rightarrow(B \rightarrow A) \mid \Rightarrow A \rightarrow B \wedge C}{}
\end{array}
$$

And the following intended HND proof:

$$
\begin{array}{r}
x_{1}: \operatorname{Com}_{C, A} \frac{[C]}{y: \operatorname{Ctr} \frac{A}{A}} x_{2}: \operatorname{Com}_{B, A} \frac{[B]}{A} \\
z \frac{z \frac{A}{B \rightarrow A}}{C \rightarrow(B \rightarrow A)} \\
\bar{x}_{1}: \operatorname{Com}_{A, C} \frac{[A]}{C} \\
u: \bar{x}_{2}: \operatorname{Com}_{A, B} \frac{[A]}{B} \\
v \frac{B \wedge C}{A \rightarrow(B \wedge C)}
\end{array}
$$

## Motivation of These concepts II

$$
\begin{array}{r}
x_{1}: \operatorname{Com}_{C, A} \frac{[C]}{y: \operatorname{Ctr} \frac{x_{2}}{A}: \operatorname{Com}_{B, A} \frac{[B]}{A}} \\
\bar{x}_{1}: \operatorname{Com}_{A, C} \frac{[A]}{z \frac{A}{B \rightarrow A}} \\
u: \wedge-i \frac{\bar{x}_{2}: \operatorname{Com}_{A, B} \frac{[A]}{B}}{v \frac{B \wedge C}{A \rightarrow(B \wedge C)}}
\end{array}
$$

## Motivation of These concepts II

$$
\begin{gathered}
x_{1}: \operatorname{Com}_{C, A} \frac{[C]}{A} \\
y: \operatorname{ctr} \frac{x_{2}: \operatorname{Com}_{B, A} \frac{[B]}{A}}{w \frac{A}{B \rightarrow A}} \\
\bar{x}_{1}: \operatorname{Com}_{A, C} \frac{[A]}{C \rightarrow(B \rightarrow A)} \\
u: \wedge-i \frac{\bar{x}_{2}: \operatorname{Com}_{A, B} \frac{[A]}{B}}{v \frac{B \wedge C}{A \rightarrow(B \wedge C)}}
\end{gathered}
$$

and the associated graph


## MOTIVATION OF THESE CONCEPTS II

$$
\begin{gathered}
x_{1}: \operatorname{Com}_{C, A} \frac{[C]}{A} \\
y: \operatorname{ctr} \frac{x_{2}: \operatorname{Com}_{B, A} \frac{[B]}{A}}{w \frac{A}{B \rightarrow A}} \\
\bar{x}_{1}: \operatorname{Com}_{A, C} \frac{[A]}{C \rightarrow(B \rightarrow A)} \\
u: \wedge-i \frac{\bar{x}_{2}: \operatorname{Com}_{A, B} \frac{[A]}{B}}{v \frac{B \wedge C}{A \rightarrow(B \wedge C)}}
\end{gathered}
$$

connectivity condition does not hold for $u$


## Motivation of These concepts II

$$
\begin{gathered}
x_{1}: \operatorname{Com}_{C, A} \frac{[C]}{A} \\
y: \operatorname{ctr} \frac{x_{2}: \operatorname{Com}_{B, A} \frac{[B]}{A}}{w \frac{A}{B \rightarrow A}} \\
\bar{x}_{1}: \operatorname{Com}_{A, C} \frac{[A]}{C \rightarrow(B \rightarrow A)} \\
u: \wedge-i \frac{\bar{x}_{2}: \operatorname{Com}_{A, B} \frac{[A]}{B}}{v \frac{B \wedge C}{A \rightarrow(B \wedge C)}}
\end{gathered}
$$

cut at the contraction, conn. comp. fall apart


## Motivation of These concepts II

$$
\begin{gathered}
x_{1}: \operatorname{Com}_{C, A} \frac{[C]}{A} \\
y: \operatorname{ctr} \frac{x_{2}: \operatorname{Com}_{B, A} \frac{[B]}{A}}{w \frac{A}{B \rightarrow A}} \\
\bar{x}_{1}: \operatorname{Com}_{A, C} \frac{[A]}{C \rightarrow(B \rightarrow A)} \\
u: \wedge-i \frac{\bar{x}_{2}: \operatorname{Com}_{A, B} \frac{[A]}{B}}{v \frac{B \wedge C}{A \rightarrow(B \wedge C)}}
\end{gathered}
$$

cut at the contraction, conn. comp. fall apart


Expresses an implicit ordering between the conjunction (introduced first) and the contraction (introduced later).

## Explicit definition of HND for Gödel logics

A finite set of pre-derivations $R$ (together with a total order on labels) forms a hyper natural deduction iff

- some obvious consistency conditions are satisfied; like occurrence of dual labels, compatibility with fixed label order, ...


## Explicit definition of HND for Gödel logics

A finite set of pre-derivations $R$ (together with a total order on labels) forms a hyper natural deduction iff

- some obvious consistency conditions are satisfied; like occurrence of dual labels, compatibility with fixed label order, ...
- Independence of premises for non-unary logical rules $r$ and communication: The connected components in $\operatorname{Cut}(\operatorname{Drop}(\mathcal{G}(R), r))$ of premises of $r$ are disjoint.


## Explicit definition of HND for Gödel logics

A finite set of pre-derivations $R$ (together with a total order on labels) forms a hyper natural deduction iff

- some obvious consistency conditions are satisfied; like occurrence of dual labels, compatibility with fixed label order, ...
- Independence of premises for non-unary logical rules $r$ and communication:
The connected components in $\operatorname{Cut}(\operatorname{Drop}(\mathcal{G}(R), r))$ of premises of $r$ are disjoint.
- Local dependence of contraction premises $r$ : The connected components in $\operatorname{Cut}(\operatorname{Drop}(\mathcal{G}(R), r))$ of premises of $r$ are equal.


## Core lemma

Chain lemma - in a GLHD the following figure cannot appear.


# Normalisation 

## NORMALISATION

Idea: Reorder deductions where an introduction rule is followed by an elimination rule:

## NORMALISATION

Idea: Reorder deductions where an introduction rule is followed by an elimination rule:

## NORMALISATION

Idea: Reorder deductions where an introduction rule is followed by an elimination rule:


## NORMALISATION

Idea: Reorder deductions where an introduction rule is followed by an elimination rule:


Effect of normalisation: hourglass form of derivation, eliminations followed by introductions.

## Permutation Conversions for hyper NATURAL DEDUCTION

Example conversion for normalisation in hyper natural deduction:

## PERMUTATION CONVERSIONS FOR HYPER NATURAL DEDUCTION

Example conversion for normalisation in hyper natural deduction:
first try: use dual labels as channels to communicate sub-derivations

$$
\begin{array}{crr}
\Gamma & \Pi & \Delta \\
\sigma_{0} \vdots & \sigma_{2} \vdots & \sigma_{1} \vdots \\
\rightarrow-e \frac{A \rightarrow B}{} & \dot{A} & \bar{x}: \operatorname{Com}_{C, B} \frac{\dot{C}}{B}
\end{array}
$$

## PERMUTATION CONVERSIONS FOR HYPER NATURAL DEDUCTION

Example conversion for normalisation in hyper natural deduction:

$$
x: \operatorname{Com}_{A \rightarrow B, C} \frac{\begin{array}{c}
\Gamma \\
\sigma_{\mathrm{O}} \vdots \\
A \rightarrow B
\end{array}}{C} \quad \bar{x}: \operatorname{Com}_{C, A \rightarrow B} \rightarrow \frac{\Delta}{\sigma_{1} \vdots} \begin{gathered}
\Pi \\
\frac{\square}{A \rightarrow B} \\
B
\end{gathered}
$$

first try: use dual labels as channels to communicate sub-derivations

$$
\begin{array}{rrr}
\Gamma & \Pi & \Delta \\
\rightarrow-e & \sigma_{0} \vdots & \sigma_{2} \vdots \\
x: \operatorname{Com}_{B, C} \frac{B}{C} & & \sigma_{1} \vdots \\
& \bar{x}: \operatorname{Com}_{C, B} \frac{\dot{C}}{B}
\end{array}
$$

## Permutation Conversions for hyper NATURAL DEDUCTION

Example conversion for normalisation in hyper natural deduction:

$$
x: \operatorname{Com}_{A \rightarrow B, C} \frac{\begin{array}{c}
\Gamma \\
\sigma_{\mathrm{O}} \vdots \\
A \rightarrow B
\end{array}}{\text { A }} \quad \bar{x}: \operatorname{com}_{C, A \rightarrow B} \rightarrow \frac{\sigma_{1} \vdots}{} \begin{gathered}
\Pi \\
\frac{\sigma_{1}}{A \rightarrow B} \\
B
\end{gathered}
$$

converts to (similar to cut-elimination in HLK)


## CONVERSIONS

- proof follows Troelstra/Schwichtenberg proof
- detour conversions, simplification conversion and permutation conversions as there, with cases for cut and split added
- branches and tracks
- double induction on cut-rank and ordinal sum of critical label sequences


## CONVERSIONS

- proof follows Troelstra/Schwichtenberg proof
- detour conversions, simplification conversion and permutation conversions as there, with cases for cut and split added
- branches and tracks
- double induction on cut-rank and ordinal sum of critical label sequences

Theorem
Contraction, communication and splitting permutation conversions convert hyper natural deductions into hyper natural deductions.

## RESULTS

Theorem (Normalisation)
Hyper Natural Deduction for Gödel Logic admits (weak) normalisation. That is, there is a way to move all elimination rules above introduction rules by applying the above conversions.

## RESULTS

## Theorem (Normalisation)

Hyper Natural Deduction for Gödel Logic admits (weak) normalisation. That is, there is a way to move all elimination rules above introduction rules by applying the above conversions.

Theorem (Sub-formula property)
Let $R$ be a normal hyper natural deduction with derived hypersequent $\mathcal{H}$. Then each formula in $R$ is a subformula of a formula in $\mathcal{H}$.

## RETURNING TO OUR WISHLIST

(semi) local
$\checkmark$ construction of deductions: apply ND inspired rules to extend a HND deductions

## RETURNING TO OUR WISHLIST

(semi) local
$\checkmark$ construction of deductions: apply ND inspired rules to extend a HND deductions
$\checkmark$ modularity of deductions: reorder/restructure deductions

## RETURNING TO OUR WISHLIST

(semi) local
$\checkmark$ construction of deductions: apply ND inspired rules to extend a HND deductions
$\checkmark$ modularity of deductions: reorder/restructure deductions
$\checkmark$ analyticity (sub-formula property)

## RETURNING TO OUR WISHLIST

(semi) local
$\checkmark$ construction of deductions: apply ND inspired rules to extend a HND deductions
$\checkmark$ modularity of deductions: reorder/restructure deductions
$\checkmark$ analyticity (sub-formula property)
normalisation
$\checkmark$ procedural normalisation via conversion steps

## FURTHER STEPS

- Extend hyper natural deduction to first order
- Reconsidering BCF system in the light of our procedural definition
- Develop term systems ("parallel $\lambda$ ") and establish Curry-Howard correspondences
- Investigate confluence of normalisation
- Connections to process algebra or other systems
- Extension to other hyper sequent systems


## FURTHER STEPS

- Extend hyper natural deduction to first order
- Reconsidering BCF system in the light of our procedural definition
- Develop term systems ("parallel $\lambda$ ") and establish Curry-Howard correspondences
- Investigate confluence of normalisation
- Connections to process algebra or other systems
- Extension to other hyper sequent systems

Thanks for your attention!

Ref: Beckmann, A. and P., N. Hyper Natural Deductions, to appear in Journal of Logic and Computation.


[^0]:    ${ }^{1}$ Partially supported by Royal Society Daiwa Anglo-Japanese Foundation International Exchanges Award

