
Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Type-theory of acyclic recursion and its calculi

Roussanka Loukanova

Stockholm University, Sweden

Second Workshop on Mathematical Logic and its Applications
5-9 March 2018, Kanazawa, Japan

1 / 29

Outline

1 Introduction to Type-Theory of Algorithms
Syntax of Lλar
Abbreviations
Denotational Semantics of Lλar

2 Reduction Rules
Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

3 Current and Future Work

4 Some References

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Syntax of Lλar
Abbreviations
Denotational Semantics of Lλar

Moschovakis Theory of Algorithms

Moschovakis [1], 1989, initiated:
untyped Theory of Algorithms: algorithms with full recursion

Moschovakis [2], 2006, introduced a
Type Theory of Acyclic Algorithms, by demonstrating it for
Computational Semantics of Human Language

Ongoing development:

Type Theory of Acyclic Algorithms, Lλar:
algorithms with acyclic recursion
Type Theory of Algorithms, Lλr :
algorithms with full recursion
Dependent-Type Theory of Situated Information and Algorithms

Applications to:

Computational Syntax-Semantics of Human Language
Computational Neuroscience (a little bit)

3 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Syntax of Lλar
Abbreviations
Denotational Semantics of Lλar

Algorithms, i.e., computations, as semantics of recursion terms

Syntax of Lλar (Lλr) =⇒ Algorithms (for Computations) =⇒ Denotations︸ ︷︷ ︸
Semantics of Lλar(L

λ
r)

denotational semantics of Lλar is by induction on term structure

the reduction calculus of Lλar (Lλr) defines a reduction relation:

A⇒ B

the reduction calculus of Lλar effectively reduces every term to its
canonical form:

A⇒cf cf(A)

the algorithm for computing den(A), for a meaningful term A, is
determined by cf(A):

den(A) = den(cf(A))

4 / 29

Syntax of Lλar - acyclic recursion (Lλr full recursion without acyclicity)

Gallin Types: σ :≡ e | t | s | (τ1 → τ2)
Constants: Constτ = {cτ0 , cτ1 , . . . }
Variables: PureVarsτ = {vτ0 , vτ1 , . . . }, RecVarsτ = {pτ0 , pτ1 , . . . }

Terms of Lλar (Lλr):

A :≡ cτ : τ | xτ : τ (1a)

| B(σ→τ)(Cσ) : τ (1b)

| λ(vσ) (Bτ) : (σ → τ) (1c)

| Aσ0 where {pσ1
1 := Aσ1

1 , . . . , pσnn := Aσnn } : σ (1d)

given that:

cτ ∈ Constτ , xτ ∈ PureVarsτ ∪ RecVarsτ

pi ∈ RecVarsσi , Ai ∈ Termsσi

{pσ1
1 := Aσ1

1 , . . . , pσnn := Aσnn } satisfies the Acyclicity Constraint iff:

there exists a function

rank : {p1, . . . , pn} → N

s.th. if pj occurs freely in Ai, then rank(pi) > rank(pj)

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Syntax of Lλar
Abbreviations
Denotational Semantics of Lλar

Abbreviations

er ≡ error

τ̃ ≡ (s→ τ), where τ ∈ Types (the type of state dependent objects
of type σ)

Sequences

−→
X ≡ X1, . . . , Xn,

for Xi ∈ Terms for all i ∈ { 1, . . . , n }

or Xi ∈ Types for all i ∈ { 1, . . . , n }

(2)

Abbreviated sequences of mutually recursive assignments:

−→p :=
−→
A ≡

[
p1 := A1, . . . , pn := An

]
(n ≥ 0) (3)

6 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Syntax of Lλar
Abbreviations
Denotational Semantics of Lλar

Denotational Semantics of Lλar

For any semantic structure A(Const) = 〈T, I 〉, where

T = {Tσ | σ ∈ Types} is a frame of typed objects,

I : Const −→ T is the interpretation function, respecting the types:
for every σ ∈ Types}, I(Constσ) = Tσ

with G = {g | g : PureVars∪RecVars −→ T}
(the set of all variable valuations),

the denotation function: denA ≡ den : Terms −→ { f | f : G −→ T }
is defined by recursion on the structure of the terms:

(D1) den(x)(g) = g(x); den(c)(g) = I(c)

(D2) den(A(B))(g) = den(A)(g)(den(B)(g))

(D3) den(λx(B))(g)
(
t
)
= den(B)(g{x := t}), for every t ∈ Tτ

(to be continued)

7 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Syntax of Lλar
Abbreviations
Denotational Semantics of Lλar

The denotation function for the recursion terms (continuation)

(D4) den(A0 where {p1 := A1, . . . , pn := An})(g) =
den(A0)(g{p1 := p1, . . . , pn := pn}),
where pi ∈ Tτi are defined by recursion on rank(pi):

pi = den(Ai)(g{pk1 := pk1 , . . . , pkm := pkm})

given that pk1 , . . . , pkm are all of the recursion variables
pj ∈ {p1, . . . , pn}, s.t. rank(pj) < rank(pi).

Intuitively:

den(A1)(g), . . . , den(An)(g) are computed recursively and stored in
p1, . . . , pn, respectively

the denotation den(A0)(g) may depend on the values stored in
p1, . . . , pn

8 / 29

Reduction Rules (to be continued)

[Congruence] If A ≡c B, then A⇒ B (cong)

[Transitivity] If A⇒ B and B ⇒ C, then A⇒ C (trans)

[Compositionality]

• If A⇒ A′ and B ⇒ B′, then A(B)⇒ A′(B′) (ap-comp / rep1)

• If A⇒ B, then λ(u)(A)⇒ λ(u)(B) (λ-comp / rep2)

• If Ai ⇒ Bi (i = 0, . . . , n), then

A0 where { p1 := A1, . . . , pn := An }
⇒ B0 where { p1 := B1, . . . , pn := Bn }

(wh-comp / rep3)

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Reduction Rules (to be continued)

[Head Rule] given that no pi occurs freely in any Bj ,(
A0 where {−→p :=

−→
A }
)

where {−→q :=
−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(head)

[Bekič-Scott Rule] given that no qi occurs freely in any Aj ,

A0 where { p :=
(
B0 where {−→q :=

−→
B }
)
, −→p :=

−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

(B-S)

[Recursion-Application Rule] given that no pi occurs freely in B,(
A0 where {−→p :=

−→
A }
)
(B) (7)

⇒ A0(B) where {−→p :=
−→
A } (recap)

10 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Reduction Rules (to be continued)

[Application Rule] given that B ∈ PrT is a proper term, and fresh
p ∈

[
RecVars−

(
FV
(
A(B)

)
∪ BV

(
A(B)

))]
,

A(B) ⇒
[
A(p) where { p := B }

]
(ap)

[λ-rule] given fresh p′i ∈
[

RecVars−
(

FV(A) ∪ BV(A)
)]

, i = 1, . . . , n,
for A ≡ A0 where { p1 := A1, . . . , pn := An }

λ(u)
(
A0 where

{
p1 := A1, . . . , pn := An

})
(λ)

⇒
[
λ(u)A′0 where

{
p′1 := λ(u)A′1, . . . , p

′
n := λ(u)A′n

}]
where, for all i = 0, . . . , n,

A′i ≡
[
Ai
{
p1 :≡ p′1(u), . . . , pn :≡ p′n(u)

}]
(9)

11 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Theorem (Canonical Form Theorem)

For each A ∈ Terms, there is a unique up to congruence, irreducible
cf(A) ∈ Terms s.th.:

1 cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}
for some explicit, irreducible A0, . . . , An ∈ Terms (n ≥ 0)

2 A⇒ cf(A)

12 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Algorithmic Equivalence

Intuitively: Lλr is a formalization of the mathematical notion of
algorithm, for computing values of recursive functions, designated by
recursion terms and expressed by terms in canonical forms.
I.e., the concept of algorithm is defined formally, at the object level of its
syntax.

Theorem (of Algorithmic Equivalence / Synonymy)

Two terms A,B ∈ Terms are algorithmically equivalent, A ≈ B, iff there
are explicit, irreducible terms A0, A1, . . . , An, B0, B1, . . . , Bn (n ≥ 0)
s.th.:

A⇒cf A0 where {p1 := A1, . . . , pn := An}
B ⇒cf B0 where {p1 := B1, . . . , pn := Bn}
|= Ai = Bi (i = 0, . . . , n), i.e.,

den(Ai)(g) = den(Bi)(g), for all g ∈ G (10)

13 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

A simple math example: pattern occurring in quantifiers of Human Language

x ∈ PureVarsσ, b ∈ Constτ1 , p ∈ RecVarsτ1 , p′ ∈ RecVars(σ→τ1),
f : (τ1 → τ2), an explicit and irreducible term:

A(σ→τ2) ≡ λ(x)
[
f(b)

]
(11a)

⇒ λ(x)
[
f(p) where { p := b }

]
by (ap) (11b)

⇒cf λ(x)f(p
′(x)) where { p′ := λ(x)b } by (λ) (11c)

6≈ λ(x)f(p) where { p := b } (11d)

≡ B(σ→τ2) (11e)

Since λ(x)b : (σ → τ1) and b : τ1 ∴ den(λ(x)b) 6= den(b)
∴ A 6≈ B
However: A ≈γ B ≈γ∗ B

A⇒cf λ(x)f(p
′(x)) where { p′ := λ(x)b } (12a)

⇒(γ) λ(x)f(p) where { p := b } (12b)

≡ B ≡ cfγ(A) ≈γ A (12c)

14 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Definition (γ-condition)

A term A ∈ Terms satisfies the γ-condition for an assignment
p := λ(v)P iff A is of the form:

A ≡ A0 where {−→a :=
−→
A, p := λ(v)P,

−→
b :=

−→
B } (13)

such that

1 v 6∈ FreeV(P)

2 All occurrences of p in A0,
−→
A and

−→
B are occurrences in a sub-term

p(v) that are in the scope of λ(v) (modulo congruence with respect
to renaming the scope variable v).

15 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

(γ)-rule

A ≡ A0 where {−→a :=
−→
A, p := λ(v)P,

−→
b :=

−→
B } (14a)

⇒(γ) A
′
0 where {−→a :=

−→
A′, p′ := P,

−→
b :=

−→
B′ } (14b)

given that:

the term A ∈ Terms satisfies the γ-condition (in Definition 3) for
the assignment p := λ(v)P

p′ ∈ RVτ is a fresh recursion variable
−→
X ′ ≡

−→
X{p(v) :≡ p′} is the result of the replacements

Xi{p(v) :≡ p′}
i.e., replacing all occurrences of p(v) by p′, in all parts Xi (for
Xi ≡ Ai, Xi ≡ Bi) in (14a)–(14b), modulo congruence with respect
to renaming the scope variable v (i ∈ {0, . . . , nX})

16 / 29

A Pattern Term for Binary, Generalised Quantifiers (e.g., in human language)

D,K ∈ Const, H ∈ Terms, D,K : ẽ, H : (ẽ→ (ẽ→ t̃))

A ≡
[
λy
[[
some(D)

](
λxdH(xd)(y)

)]]
(K) (15a)

⇒ . . . (15b)

⇒
[
λ(yk)

(
some

(
d′(yk)

)(
h(yk)

))
where

{ d′ := λ(yk)D,

h := λ(yk)λ(xd)H(xd)(yk) }
]
(K)

(15c)

⇒cf cf(A) ≡ (15d)[
λ(yk)

(
some

(
d′(yk)

)
(h(yk))

)]
(k) where

{h := λ(yk)λ(xd)H(xd)(yk),

d′ := λ(yk)D, k := K }

(15e)

⇒(γ)

[
λ(yk)some(d)

(
h(yk)

)]
(k) where

{h := λ(yk)λ(xd)H(xd)(yk),

d := D, k := K }
(15f)

γ-reduction

Adding the γ-rule to the set of reduction rules of Lλar yields:

non-deterministic reductions sequences: A⇒(γ) B

some terms can be reduced to different γ-irreducible terms that are
not algorithmically equivalent

A⇒(γ) B1, A⇒(γ) B2, B1 6≈ B2, B1, B2 are γ-irreducible (16)

A solution:
The rules are applied to the innermost, reducible sub-terms, i.e., from

inside-out: A
in⇒(γ) B

Theorem (γ-Canonical Form Theorem: for innermost γ-reductions)

For each A ∈ Terms, there is a unique up to congruence, γ-irreducible
cfγ(A) ∈ Terms s.th.:

1 cfγ(A) ≡ A0 where {p1 := A1, . . . , pn := An}
for some explicit, γ-irreducible terms A0, . . . , An ∈ Terms (n ≥ 0)

2 A
in⇒(γ) cfγ(A)

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

γ∗-Reduction stronger reduction

Definition (γ∗-condition)

A term A ∈ Terms satisfies the γ∗-condition for an assignment
p := λ(−→u −→σ)λ(vσ)P τ : (−→σ → (σ → τ)), with respect to λ(vσ),
iff A is of the form: (17a)–(17c):

A ≡ A0 where {−→a :=
−→
A, (17a)

p := λ(−→u)λ(v)P, (17b)
−→
b :=

−→
B } (17c)

such that the following holds:

1 v 6∈ FreeV(P)

2 All occurrences of p in A0,
−→
A , and

−→
B are occurrences in p(−→u)(v),

modulo renaming the variables −→u , v

19 / 29

(γ∗)-rule

A ≡ A0 where {−→a :=
−→
A, (18a)

p := λ(−→u)λ(v)P, (18b)
−→
b :=

−→
B } (18c)

⇒(γ∗) A
′
0 where {−→a :=

−→
A ′, (18d)

p′ := λ(−→u)P ′, (18e)
−→
b :=

−→
B′ } (18f)

given that:

A ∈ Terms satisfies the γ∗-condition (in Definition 5) for
p := λ(−→u)λ(v)P : (−→σ → (σ → τ)), with respect to λ(v)
p′ ∈ RecVars(−→σ→τ) is a fresh recursion variable
−→
X ′ ≡

−→
X{p(−→u)(v) :≡ p′(−→u)} is the result of the replacements

Xi{p(−→u)(v) :≡ p′(−→u)},
i.e., replacing all occurrences of p(−→u)(v) by p′(−→u), in all
corresponding parts Xi ≡ Ai, Xi ≡ Bi, in (18a)–(18f), modulo
renaming the variables −→u , v

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Theorem (γ∗-Canonical Form Theorem)

For each A ∈ Terms, there is a unique up to congruence, γ∗-irreducible
cfγ*(A) ∈ Terms, s.th.:

1 cfγ*(A) ≡ A0 where {p1 := A1, . . . , pn := An}
for some explicit, γ∗-irreducible A0, . . . , An ∈ Terms (n ≥ 0)

2 A⇒(γ∗) cfγ*(A)

21 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

γ∗-Algorithmic Equivalence

Theorem (γ∗-Algorithmic Equivalence)

Two terms A,B ∈ Terms are γ∗-algorithmically equivalent, A ≈γ∗ B, iff
there are explicit, γ∗-irreducible terms A0, A1, . . . , An, B0, B1, . . . , Bn
(n ≥ 0), s.th.:

A⇒cfγ∗ A0 where {p1 := A1, . . . , pn := An} ≡ cfγ*(A)

B ⇒cfγ∗ B0 where {p1 := B1, . . . , pn := Bn} ≡ cfγ*(B)

|= Ai = Bi (i = 0, . . . , n), i.e.,

den(Ai)(g) = den(Bi)(g), for all g ∈ G (19)

22 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Theorem

For any A,B ∈ Terms,

A⇒ B =⇒ A ≈s B (20a)

=⇒ A ≈ B (20b)

=⇒ A ≈γ∗ B =⇒ A |=| B (20c)

Theorem

1 For all A,B ∈ Terms

A ≈γ B =⇒ A ≈γ∗ B (21)

The proofs are (longish) by using induction on term structure, definitions,
and theorems of algorithmic equivalence.

23 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Key Features of Lλar
Examples
γ-Reduction
γ∗-Reduction
Examples and Counterexamples

Theorem

1 There exist A,B ∈ Terms, such that A ≈γ B, A 6≈ B. I.e., in
general:

A ≈γ B 6=⇒ A ≈ B (22)

2 There exist A,B ∈ Terms, such that A ≈γ∗ B, A 6≈ B. I.e., in
general:

A ≈γ∗ B 6=⇒ A ≈ B (23)

3 There exist A,B ∈ Terms, such that A ≈γ∗ B, A 6≈γ B. I.e., in
general:

A ≈γ∗ B 6=⇒ A ≈γ B (24)

24 / 29

A ≡ λ(x1)λ(x2)
[
f(p) where { p := [P (q)](x2),

q := Q(x1)}
] (25a)

in⇒(λ) λ(x1)
[
λ(x2)f(p

1(x2)) where {

p1 := λ(x2)
[[
P (q1(x2))

]
(x2)

]
,

q1 := λ(x2)Q(x1)}
] (25b)

in⇒(γ) λ(x1)
[
λ(x2)f(p

1(x2)) where {

p1 := λ(x2)
[[
P (q1(x2))

]
(x2)

]
,

q11 := Q(x1)}
] (25c)

in⇒(λ) λ(x1)λ(x2)f(p
1
1(x1)(x2)) where {

p21 := λ(x1)λ(x2)
[[
P (q21(x1))

]
(x2)

]
,

q21 := λ(x1)Q(x1)} ≡ cfγ(A) ≡ B

(25d)

∴ A 6≈ B, A ≈γ B ≡ cfγ(A)

A ≡ λ(x1)λ(x2)
[
f(p) where { p := [P (q)](x2),

q := Q(x1)}
] (26a)

⇒(λ) λ(x1)
[
λ(x2)f(p

1(x2)) where {

p1 := λ(x2)
[[
P (q1(x2))

]
(x2)

]
,

q1 := λ(x2)Q(x1)}
] (26b)

⇒(λ) λ(x1)λ(x2)f(p
1(x1)(x2)) where {

p2 := λ(x1)λ(x2)
[[
P (q2(x1)(x2))

]
(x2)

]
,

q2 := λ(x1)λ(x2)Q(x1)} ≡ cf(A) 6≡ cfγ(A)

(26c)

⇒(γ∗) λ(x1)λ(x2)f(p
1
1(x1)(x2)) where {

p21 := λ(x1)λ(x2)
[[
P (q21(x1))

]
(x2)

]
,

q21 := λ(x1)Q(x1)}

(26d)

≡ cfγ*(A) ≡ cfγ(A) ≡ B (26e)

∴ A 6≈ B, A ≈γ∗ B

Kim hugs some dog (27a)

render−−−→ A ≡
[
λy
[[
some(dog)

](
λxd hugs(xd)(y)

)]]
(kim) (27b)

⇒ . . . (27c)

⇒
[
λ(yk)

(
some

(
d′(yk)

)(
h(yk)

))
where

{ d′ := λ(yk)dog ,

h := λ(yk)λ(xd)hugs(xd)(yk) }
]
(kim)

(27d)

⇒cf cf(A) ≡ (27e)[
λ(yk)

(
some

(
d′(yk)

)
(h(yk))

)]
(k) where

{h := λ(yk)λ(xd)hugs(xd)(yk),

d′ := λ(yk)dog , k := kim }

(27f)

⇒(γ)

[
λ(yk)some(d)

(
h(yk)

)]
(k) where

{h := λ(yk)λ(xd)hugs(xd)(yk),

d := dog , k := kim }
(27g)

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Some Current Tasks (among many others) and Future Work

My current focus is on

development of Lλar
applications to computational semantics and computational
syntax-semantics interface of natural language
applications to computational neuroscience

Longer-term work

Type Theory of Algorithms, Lλr :
algorithms with full recursion
Dependent-Type Theory of Situated Information and Algorithms:

dependent types
situated, partial, and parametric components

28 / 29

Introduction to Type-Theory of Algorithms
Reduction Rules

Current and Future Work
Some References

Some References I

Yiannis N Moschovakis.
The formal language of recursion.
The Journal of Symbolic Logic, 54(04):1216–1252, 1989.

Yiannis N. Moschovakis.
A logical calculus of meaning and synonymy.
Linguistics and Philosophy, 29(1):27–89, Feb 2006.
URL: http://dx.doi.org/10.1007/s10988-005-6920-7,
doi:10.1007/s10988-005-6920-7.

29 / 29

http://dx.doi.org/10.1007/s10988-005-6920-7
http://dx.doi.org/10.1007/s10988-005-6920-7

	Introduction to Type-Theory of Algorithms
	Syntax of LAR
	Abbreviations
	Denotational Semantics of LAR

	Reduction Rules
	Key Features of LAR
	Examples
	-Reduction
	gamma-Reduction
	Examples and Counterexamples

	Current and Future Work
	Some References

