On the mathematical and foundational significance of the uncountable

Sam Sanders (jww Dag Normann)

Kanazawa, March 2018

Center for Advanced Studies, LMU Munich

Reverse "Mathematics"

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).

The goal of RM is classification: find the minimal axioms needed to prove theorems from mathematics.

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).
The goal of RM is classification: find the minimal axioms needed to prove theorems from mathematics. This results in the elegant 'Big Five' picture and associated linear order (see below).

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).
The goal of RM is classification: find the minimal axioms needed to prove theorems from mathematics. This results in the elegant 'Big Five' picture and associated linear order (see below).
The framework of $R M$ is second-order arithmetic Z_{2}, i.e. only numbers and sets thereof are available.

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).
The goal of RM is classification: find the minimal axioms needed to prove theorems from mathematics. This results in the elegant 'Big Five' picture and associated linear order (see below).

The framework of RM is second-order arithmetic Z_{2}, i.e. only numbers and sets thereof are available.

Objects of higher type, like continuous functions on the reals, topologies, Banach spaces,, are represented via 'codes', i.e. countable approximations.

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).

The goal of RM is classification: find the minimal axioms needed to prove theorems from mathematics. This results in the elegant 'Big Five' picture and associated linear order (see below).

The framework of RM is second-order arithmetic Z_{2}, i.e. only numbers and sets thereof are available.

Objects of higher type, like continuous functions on the reals, topologies, Banach spaces,, are represented via 'codes', i.e. countable approximations.

Received view: coding in RM is harmless; adopting higher types changes little-to-nothing.

Reverse "Mathematics"

Reverse Mathematics (RM), as developed by Friedman-Simpson within Z_{2}, is a mature field nowadays (Martin Davis, 2017, FOM).

The goal of RM is classification: find the minimal axioms needed to prove theorems from mathematics. This results in the elegant 'Big Five' picture and associated linear order (see below).
The framework of $R M$ is second-order arithmetic Z_{2}, i.e. only numbers and sets thereof are available.

Objects of higher type, like continuous functions on the reals, topologies, Banach spaces, are represented via 'codes', i.e. countable approximations.

Received view: coding in RM is harmless; adopting higher types changes little-to-nothing.

This talk: introducing higher-order objects destroys the 'Big Five' picture of RM and collapses the associated linear order.

The Big Five picture of RM

$\hat{f}_{1}^{1}-C A_{0}$
- ATR 0
$-A C A_{0}$
$-W K L_{0}$
- RCA $_{0}$

The Big Five picture of RM

The Big Five picture of RM

The Big Five picture of RM

```
全竌-CA
ATR0
ACA0
圭WKLO
    Banach }\leftrightarrow\mathrm{ Heine-Borel }\leftrightarrow\mathrm{ Brouwer fixp. }\leftrightarrow\mathrm{ Gödel compl. }\leftrightarrow\ldots.
```

夆 RCA_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.

The Big Five picture of RM

$$
\begin{aligned}
\text { ACA } A_{0} \leftrightarrow & \text { Bolzano-Weierstraß } \leftrightarrow \text { Ascoli-Arzela } \leftrightarrow \text { Köning } \leftrightarrow \text { Ramsey }(k \geq 3) \\
\leftrightarrow & \text { Countable Basis } \leftrightarrow \text { Countable Max. Ideal } \leftrightarrow \text { MCT } \leftrightarrow \ldots \\
& \text { Banach } \leftrightarrow \text { Heine-Borel } \leftrightarrow \text { Brouwer fixp. } \leftrightarrow \text { Gödel compl. } \leftrightarrow \ldots
\end{aligned}
$$

[^0]
The Big Five picture of RM

$$
\begin{aligned}
& \text { ATR }{ }_{0} \leftrightarrow \text { Ulm } \leftrightarrow \text { Lusin } \leftrightarrow \text { Perfect Set } \leftrightarrow \text { Baire space Ramsey } \leftrightarrow \ldots \\
& \text { ACA } A_{0} \leftrightarrow \text { Bolzano-Weierstraß } \leftrightarrow \text { Ascoli-Arzela } \leftrightarrow \text { Köning } \leftrightarrow \text { Ramsey }(k \geq 3) \\
& \leftrightarrow \text { Countable Basis } \leftrightarrow \text { Countable Max. Ideal } \leftrightarrow \text { MCT } \leftrightarrow \ldots \\
& \text { WKL }{ }_{0} \leftrightarrow \text { Peano exist. } \leftrightarrow \text { Weierstraß approx. } \leftrightarrow \text { Weierstraß max. } \leftrightarrow \text { Hahn- } \\
& \text { Banach } \leftrightarrow \text { Heine-Borel } \leftrightarrow \text { Brouwer fixp. } \leftrightarrow \text { Gödel compl. } \leftrightarrow \ldots
\end{aligned}
$$

[^1]
The Big Five picture of RM

	\leftrightarrow Ulm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$ \leftrightarrow Bolzano-Weierstraß \leftrightarrow Ascoli-Arzela \leftrightarrow Köning \leftrightarrow Ramsey ($k \geq 3$) \leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal \leftrightarrow MCT $\leftrightarrow \ldots$ \leftrightarrow Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow Hahn- Banach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$

The Big Five picture of RM

	\leftrightarrow Ulm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$ \leftrightarrow Bolzano-Weierstraß \leftrightarrow Ascoli-Arzela \leftrightarrow Köning \leftrightarrow Ramsey ($k \geq 3$) \leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal \leftrightarrow MCT $\leftrightarrow \ldots$ \leftrightarrow Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow Hahn- Banach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$

Steve Simpson: the 'Big Five' capture most of ordinary mathematics (=non-set-theoretic) in a linear order (part of the Gödel hierarchy).

The Big Five picture of RM

RCA_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.
Steve Simpson: the 'Big Five' capture most of ordinary mathematics (=non-set-theoretic) in a linear order (part of the Gödel hierarchy). This talk: introducing higher-order objects destroys the 'Big Five' picture and collapses the linear order;

The Big Five picture of RM

圭 $\Pi_{1}^{1}-C A_{0} \leftrightarrow$ Cantor-Bendixson \leftrightarrow Silver \leftrightarrow Baire space Det. \leftrightarrow Menger $\leftrightarrow \ldots$
ATR $0 \leftrightarrow$ Ulm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$

\leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal \leftrightarrow MCT $\leftrightarrow \ldots$
WKL $0 \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$

FRCA proves Interm. value thm, Soundness thm, Existence of alg. clos.
Steve Simpson: the 'Big Five' capture most of ordinary mathematics (=non-set-theoretic) in a linear order (part of the Gödel hierarchy).

This talk: introducing higher-order objects destroys the 'Big Five' picture and collapses the linear order; the picture and order are merely artefacts of second-order arithmetic (in particular: of countable approximations).

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Cousin proved 'Cousin's lemma' before 1893, dealing with \mathbb{R}^{2} :

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Cousin proved 'Cousin's lemma' before 1893, dealing with \mathbb{R}^{2} :
Define a connected space S bounded by a simple or complex closed contour; if to each point of S there corresponds a circle of finite radius, then the region can be divided into a finite number of subregions such that each subregion is interior to a circle of the given set having its center in the subregion.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Cousin proved 'Cousin's lemma' before 1893, dealing with \mathbb{R}^{2} :
Define a connected space S bounded by a simple or complex closed contour; if to each point of S there corresponds a circle of finite radius, then the region can be divided into a finite number of subregions such that each subregion is interior to a circle of the given set having its center in the subregion.

This is just Heine-Borel compactness for uncountable open covers. Pincherle's theorem (1882) has Cousin's lemma as a special case.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Cousin proved 'Cousin's lemma' before 1893, dealing with \mathbb{R}^{2} :
Define a connected space S bounded by a simple or complex closed contour; if to each point of S there corresponds a circle of finite radius, then the region can be divided into a finite number of subregions such that each subregion is interior to a circle of the given set having its center in the subregion.

This is just Heine-Borel compactness for uncountable open covers. Pincherle's theorem (1882) has Cousin's lemma as a special case.

Lindelöf proved the related 'Lindelöf lemma' (1903): an uncountable open cover of $E \subset \mathbb{R}^{n}$ has a countable sub-cover.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Cousin proved 'Cousin's lemma' before 1893, dealing with \mathbb{R}^{2} :
Define a connected space S bounded by a simple or complex closed contour; if to each point of S there corresponds a circle of finite radius, then the region can be divided into a finite number of subregions such that each subregion is interior to a circle of the given set having its center in the subregion.

This is just Heine-Borel compactness for uncountable open covers. Pincherle's theorem (1882) has Cousin's lemma as a special case.

Lindelöf proved the related 'Lindelöf lemma' (1903): an uncountable open cover of $E \subset \mathbb{R}^{n}$ has a countable sub-cover.

The Cousin and Lindelöf lemmas cannot be formalised in second-order arithmetic.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Dirichlet mentions 'Dirichlet's function', i.e. the characteristic function of \mathbb{Q}, for the first time in 1829.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Dirichlet mentions 'Dirichlet's function', i.e. the characteristic function of \mathbb{Q}, for the first time in 1829.

Riemann defines a function with countably many discontinuities via a series in his Habilitationsschrift in 1855

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Dirichlet mentions 'Dirichlet's function', i.e. the characteristic function of \mathbb{Q}, for the first time in 1829.

Riemann defines a function with countably many discontinuities via a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Dirichlet mentions 'Dirichlet's function', i.e. the characteristic function of \mathbb{Q}, for the first time in 1829.

Riemann defines a function with countably many discontinuities via a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.
Do we really need discontinuous functions and/or Cousin's lemma?

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
Dirichlet mentions 'Dirichlet's function', i.e. the characteristic function of \mathbb{Q}, for the first time in 1829.

Riemann defines a function with countably many discontinuities via a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.
Do we really need discontinuous functions and/or Cousin's lemma?
YES; even in scientifically applicable math!

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue's integral (1904).

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue's integral (1904). The gauge integral (directly) formalises the Feynman path integral from physics.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue's integral (1904). The gauge integral (directly) formalises the Feynman path integral from physics. Gefundenes Fressen!

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue's integral (1904). The gauge integral (directly) formalises the Feynman path integral from physics. Gefundenes Fressen!

As we will see below, the very definition of the gauge integral requires higher-order theorems and objects, namely (full) Cousin's lemma and discontinuous functions on \mathbb{R}.

Step 1: ordinary mathematics requiring higher types

Ordinary mathematics $=$ prior to or independent of abstract set theory
The gauge integral was introduced in 1912 by Denjoy (in a different form) and generalises Lebesgue's integral (1904). The gauge integral (directly) formalises the Feynman path integral from physics. Gefundenes Fressen!

As we will see below, the very definition of the gauge integral requires higher-order theorems and objects, namely (full) Cousin's lemma and discontinuous functions on \mathbb{R}.

The development of the gauge integral:
Denjoy-Luzin-Perron-Henstock-Kurzweil

Step 2: The Big Five and Higher-order RM

Step 2: The Big Five and Higher-order RM

${ }^{\downarrow} Z_{2}^{\omega}$
$\Pi_{k}^{1}-\mathrm{CA}_{0}^{\omega}$
ATR ${ }_{0}^{\omega}$
- ACA ${ }_{0}^{\omega}$
WKL ${ }_{0}^{\omega}$
$\mathrm{RCA}_{0}^{\omega} / \mathrm{RCA}_{0}$

Step 2: The Big Five and Higher-order RM

${ }^{\star} Z_{2}^{\omega}$
$\Pi_{k}^{1}-\mathrm{CA}_{0}^{\omega}$
ATR ${ }_{0}^{\omega}$
- ACA ${ }_{0}^{\omega}$
WKL ${ }_{0}^{\omega}$
$\mathrm{RCA}_{0}^{\omega} / \mathrm{RCA}_{0}$

 All the second-order systems have higher-order counterparts!

Step 2: The Big Five and Higher-order RM

```
Z Z
```

$-\Pi_{k}^{1}-\mathrm{CA}_{0}^{\omega}$
ATR ${ }_{0}^{\omega}$

- ACA ${ }_{0}^{\omega}$
WKL ${ }_{0}^{\omega}$
RCA ${ }_{0}^{\omega} /$ RCA $_{0}$

All the second-order systems have higher-order counterparts!

Step 2: The Big Five and Higher-order RM

$-Z_{2}^{\omega}\left(\exists^{3}\right)$: there is a functional \exists^{3} deciding ' $\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(F(f)=0)^{\prime}$ for any F^{2}
$-\Pi_{k}^{1}$-CA ${ }_{0}^{\omega}\left(S_{k}^{2}\right)$: there is a functional S_{k}^{2} which decides Π_{k}^{1}-formulas
ATR ${ }_{0}^{\omega}$

- ACA ${ }_{0}^{\omega}$

WKL ${ }_{0}^{\omega}$

RCA ${ }_{0}^{\omega} /$ RCA $_{0}$
All the second-order systems have higher-order counterparts!

Step 2: The Big Five and Higher-order RM

$-Z_{2}^{\omega}\left(\exists^{3}\right)$: there is a functional \exists^{3} deciding ' $\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(F(f)=0)$ ' for any F^{2}
$-\Pi_{k}^{1}$-CA ${ }_{0}^{\omega}\left(S_{k}^{2}\right)$: there is a functional S_{k}^{2} which decides Π_{k}^{1}-formulas
ATR ${ }_{0}^{\omega}$
(UATR): 'there is a functional expressing transfinite recursion'

- ACA ${ }_{0}^{\omega}$

WKL ${ }_{0}^{\omega}$

RCA ${ }_{0}^{\omega} /$ RCA $_{0}$
All the second-order systems have higher-order counterparts!

Step 2: The Big Five and Higher-order RM

$-Z_{2}^{\omega}\left(\exists^{3}\right)$: there is a functional \exists^{3} deciding ' $\left(\exists f \in \mathbb{N}^{N}\right)(F(f)=0)^{\prime}$ for any F^{2}
$-\Pi_{k}^{1}$-CA $A_{0}^{\omega}\left(S_{k}^{2}\right)$: there is a functional S_{k}^{2} which decides Π_{k}^{1}-formulas
ATR ${ }_{0}^{\omega}$
(UATR): 'there is a functional expressing transfinite recursion'

- ACA ${ }_{0}^{\omega}$ $\left(\exists^{2}\right)$: there is a functional \exists^{2} deciding arithm. formulas
- RCA ${ }_{0}^{\omega} /$ RCA $_{0}$

All the second-order systems have higher-order counterparts!

Step 2: The Big Five and Higher-order RM

$-Z_{2}^{\omega}\left(\exists^{3}\right)$: there is a functional \exists^{3} deciding ' $\left(\exists f \in \mathbb{N}^{N}\right)(F(f)=0)^{\prime}$ for any F^{2}
$\Pi_{k}^{1}-\mathrm{CA}_{0}^{\omega}\left(S_{k}^{2}\right)$: there is a functional S_{k}^{2} which decides Π_{k}^{1}-formulas
ATR ${ }_{0}^{\omega}$
(UATR): 'there is a functional expressing transfinite recursion'

- ACA ${ }_{0}^{\omega}$ $\left(\exists^{2}\right)$: there is a functional \exists^{2} deciding arithm. formulas

WKL ${ }_{0}^{\omega}$
(FF): the fan functional computes a modulus of uniform continuity for any continuous functional on $2^{\mathbb{N}}$

RCA ${ }_{0}^{\omega} /$ RCA $_{0}$
All the second-order systems have higher-order counterparts!

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893)

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover.

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$.

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$. Hence, we have:

$$
\left(\forall \Psi: I \rightarrow \mathbb{R}^{+}\right)\left(\exists y_{1}, \ldots, y_{k} \in[0,1]\right)\left([0,1] \subset \cup_{i \leq k} l_{y_{i}}^{\Psi}\right)
$$

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$. Hence, we have:

$$
\begin{equation*}
\left(\forall \Psi: I \rightarrow \mathbb{R}^{+}\right)\left(\exists y_{1}, \ldots, y_{k} \in[0,1]\right)\left([0,1] \subset \cup_{i \leq k} l_{y_{i}}^{\Psi}\right) \tag{HBU}
\end{equation*}
$$

The reals y_{1}, \ldots, y_{k} yield a finite sub-cover; NO conditions on ψ.

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$. Hence, we have:

$$
\begin{equation*}
\left(\forall \Psi: I \rightarrow \mathbb{R}^{+}\right)\left(\exists y_{1}, \ldots, y_{k} \in[0,1]\right)\left([0,1] \subset \cup_{i \leq k} l_{y_{i}}^{\Psi}\right) \tag{HBU}
\end{equation*}
$$

The reals y_{1}, \ldots, y_{k} yield a finite sub-cover; NO conditions on ψ.
special fan functional Θ computes y_{1}, \ldots, y_{k} from Ψ, i.e realiser for HBU.

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$. Hence, we have:

$$
\begin{equation*}
\left(\forall \Psi: I \rightarrow \mathbb{R}^{+}\right)\left(\exists y_{1}, \ldots, y_{k} \in[0,1]\right)\left([0,1] \subset \cup_{i \leq k} l_{y_{i}}^{\Psi}\right) \tag{HBU}
\end{equation*}
$$

The reals y_{1}, \ldots, y_{k} yield a finite sub-cover; NO conditions on ψ.
special fan functional Θ computes y_{1}, \ldots, y_{k} from Ψ, i.e realiser for HBU.
Where does HBU fit in RM?

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$. Hence, we have:

$$
\begin{equation*}
\left(\forall \Psi: I \rightarrow \mathbb{R}^{+}\right)\left(\exists y_{1}, \ldots, y_{k} \in[0,1]\right)\left([0,1] \subset \cup_{i \leq k} l_{y_{i}}^{\Psi}\right) \tag{HBU}
\end{equation*}
$$

The reals y_{1}, \ldots, y_{k} yield a finite sub-cover; NO conditions on ψ.
special fan functional Θ computes y_{1}, \ldots, y_{k} from Ψ, i.e realiser for HBU .
Where does HBU fit in RM? Almost equivalent question: How hard is it to compute Θ (in the sense of Kleene's S1-S9)?

Step 2: Cousin's lemma in higher-order RM

Cousin's lemma (1893) implies that ANY open cover of $I \equiv[0,1]$ has a finite sub-cover. Any functional $\Psi: I \rightarrow \mathbb{R}^{+}$yields a 'canonical' cover $U_{x \in I} I_{x}^{\Psi}$ of I, where $I_{x}^{\Psi} \equiv(x-\Psi(x), x+\Psi(x))$. Hence, we have:

$$
\begin{equation*}
\left(\forall \Psi: I \rightarrow \mathbb{R}^{+}\right)\left(\exists y_{1}, \ldots, y_{k} \in[0,1]\right)\left([0,1] \subset \cup_{i \leq k} l_{y_{i}}^{\Psi}\right) \tag{HBU}
\end{equation*}
$$

The reals y_{1}, \ldots, y_{k} yield a finite sub-cover; NO conditions on ψ.
special fan functional Θ computes y_{1}, \ldots, y_{k} from Ψ, i.e realiser for HBU.
Where does HBU fit in RM? Almost equivalent question: How hard is it to compute Θ (in the sense of Kleene's S1-S9)?

PS: Borel's proof of HBU (≈ 1900) makes no use of the axiom of choice. With minimal adaption, Borel's proof yields a realiser Θ for HBU.

Step 2: The Big Five and HBU

Step 2: The Big Five and HBU

$-Z_{2}^{\omega}$
$-\Pi_{k}^{1}-C A_{0}^{\omega}$
$-A T R_{0}^{\omega}$
$-A C A_{0}^{\omega}$
$-W K L_{0}$
$-R C A_{0}^{\omega}$

Step 2: The Big Five and HBU

```
    Z L
    \Pik
    ATR炭
-ACA\omega
```


Step 2: The Big Five and HBU

WKL $0 _$HBU: Heine-Borel thm for uncountable covers on $[0,1]$

- RCA $_{0}^{\omega}$

Step 2: The Big Five and HBU

WKL $0 _$HBU: Heine-Borel thm for uncountable covers on $[0,1]$

- RCA $_{0}^{\omega}$

Step 2: The Big Five and HBU

WKL $0 _$HBU: Heine-Borel thm for uncountable covers on $[0,1]$

- RCA $_{0}^{\omega}$

Step 2: The Big Five and HBU

WKL $0 _\mathrm{HBU}:$ Heine-Borel thm for uncountable covers on $[0,1]$

- RCA $_{0}^{\omega}$

Step 2: The Big Five and HBU

FULL SOA as in Z_{2}^{ω} is needed to prove HBU! $\mathrm{WKL}_{0} \longleftarrow \mathrm{HBU}:$ Heine-Borel thm for uncountable covers on $[0,1]$

Step 2: The Big Five and HBU

FULL SOA as in Z_{2}^{ω} is needed to prove HBU! HBU falls FAR outside of the Big Five!

WK Lo
HBU: Heine-Borel the for uncountable covers on $[0,1]$

Step 2: The Big Five and HBU

FULL SOA as in Z_{2}^{ω} is needed to prove HBU! HBU falls FAR outside of the Big Five! WKL $0 _$HBU: Heine-Borel thm for uncountable covers on $[0,1]$

In fact: NO type 2 functional computes (S1-S9) a realiser Θ for HBU.

Step 2: The Big Five and HBU

FULL SOA as in Z_{2}^{ω} is needed to prove HBU! HBU falls FAR outside of the Big Five! WKL $0 _$HBU: Heine-Borel thm for uncountable covers on $[0,1]$

In fact: NO type 2 functional computes (S1-S9) a realiser Θ for HBU. hence: NO Big Five system implies HBU;

Step 2: The Big Five and HBU

FULL SOA as in Z_{2}^{ω} is needed to prove HBU! HBU falls FAR outside of the Big Five! $\mathrm{WKL}_{0} \longleftarrow \mathrm{HBU}:$ Heine-Borel thm for uncountable covers on $[0,1]$

In fact: NO type 2 functional computes (S1-S9) a realiser Θ for HBU. hence: NO Big Five system implies HBU ; same for $\Pi_{k}^{1}-\mathrm{CA}_{0}^{\omega}$

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.
(3) There is a non-gauge integrable function.

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.
(3) There is a non-gauge integrable function.
(9) There is a gauge integrable function which is not Lebesgue int.

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.
(3) There is a non-gauge integrable function.
(9) There is a gauge integrable function which is not Lebesgue int.
(3) a version of Hake's theorem (about improper gauge integrals)

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.
(3) There is a non-gauge integrable function.
(9) There is a gauge integrable function which is not Lebesgue int.
(3) a version of Hake's theorem (about improper gauge integrals)

The gauge integral provides a simpler generalisation of Lebesgue's integral and a partial/direct formalisation for Feynman's path integral.

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.
(3) There is a non-gauge integrable function.
(9) There is a gauge integrable function which is not Lebesgue int.
(3) a version of Hake's theorem (about improper gauge integrals)

The gauge integral provides a simpler generalisation of Lebesgue's integral and a partial/direct formalisation for Feynman's path integral.
$f: \mathbb{R} \rightarrow \mathbb{R}$ is Riemann integrable on $I \equiv[0,1]$ with integral $A \in \mathbb{R}$:

$$
(\forall \varepsilon>0)(\exists \underbrace{\delta>0}_{\text {constant }})(\forall P)(\underbrace{\|P\|<\delta}_{P \text { is 'finer' than } \delta} \rightarrow|S(P, f)-A|<\varepsilon)
$$

$P=\left(0, t_{1}, x_{1}, \ldots x_{k}, t_{k}, 1\right)$ partition of $I ;$ mesh $\|P\|:=\max _{i \leq k}\left(x_{i+1}-x_{i}\right)$; Riemann sum $S(P, f)=\sum_{i=0}^{k} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)$.

Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:
(1) If a function is gauge integrable, the associated integral is unique.
(2) If a function is Riemann int., it is gauge int. with the same integral.
(3) There is a non-gauge integrable function.
(9) There is a gauge integrable function which is not Lebesgue int.
(3) a version of Hake's theorem (about improper gauge integrals)

The gauge integral provides a simpler generalisation of Lebesgue's integral and a partial/direct formalisation for Feynman's path integral.
$f: \mathbb{R} \rightarrow \mathbb{R}$ is gauge integrable on $I \equiv[0,1]$ with integral $A \in \mathbb{R}$:
$(\forall \varepsilon>0)(\exists \underbrace{\delta: I \rightarrow \mathbb{R}^{+}}_{\text {'gauge' function }})(\forall P)(\underbrace{\text { every } I_{t_{i}}^{\delta} \text { covers }\left[x_{i}, x_{i+1}\right]}_{P \text { is 'finer' than } \delta} \rightarrow|S(P, f)-A|<\varepsilon)$
$P=\left(0, t_{1}, x_{1}, \ldots x_{k}, t_{k}, 1\right)$ partition of $I ;$ mesh $\|P\|:=\max _{i \leq k}\left(x_{i+1}-x_{i}\right)$;
Riemann sum $S(P, f)=\sum_{i=0}^{k} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)$.

Step 3: More mathematical friends for HBU

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'.

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA $_{0}$ and HBU $\leftrightarrow[W K L+$ LIND] (splitting).

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA ${ }_{0}$ and HBU $\leftrightarrow[$ WKL + LIND] (splitting).

The existence of Lebesgue numbers for any open cover of $[0,1]$ implies HBU.

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA A_{0} and HBU $\leftrightarrow[$ WKL + LIND] (splitting).

The existence of Lebesgue numbers for any open cover of $[0,1]$ implies HBU. Marcone and Guisto (1998) write:
the restriction [on Lebesgue numbers] imposed by the expressive power of the language of $\left[Z_{2}\right]$ on the spaces we study consists solely of forsaking non separable spaces.

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA A_{0} and HBU $\leftrightarrow[$ WKL + LIND] (splitting).

The existence of Lebesgue numbers for any open cover of $[0,1]$ implies HBU. Marcone and Guisto (1998) write:
the restriction [on Lebesgue numbers] imposed by the expressive power of the language of $\left[Z_{2}\right]$ on the spaces we study consists solely of forsaking non separable spaces.

Lebesgue numbers for countable covers of $[0,1]$ exists in ACA_{0}; HBU is not provable in any fragment of second-order arithmetic $\Pi_{k}^{1}-C A_{0}^{\omega}$.

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA A_{0} and HBU $\leftrightarrow[$ WKL + LIND] (splitting).

The existence of Lebesgue numbers for any open cover of $[0,1]$ implies HBU. Marcone and Guisto (1998) write:
the restriction [on Lebesgue numbers] imposed by the expressive power of the language of $\left[Z_{2}\right]$ on the spaces we study consists solely of forsaking non separable spaces.

Lebesgue numbers for countable covers of $[0,1]$ exists in ACA_{0}; HBU is not provable in any fragment of second-order arithmetic $\Pi_{k}^{1}-C A_{0}^{\omega}$.
Many 'covering lemmas' imply LIND or HBU: Vitali, Besicovitsch, Banach-Alaoglu, paracompactness, Young-Young, Rademacher,

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA $_{0}$ and HBU $\leftrightarrow[W K L+$ LIND] (splitting).

The existence of Lebesgue numbers for any open cover of $[0,1]$ implies HBU. Marcone and Guisto (1998) write:
the restriction [on Lebesgue numbers] imposed by the expressive power of the language of $\left[Z_{2}\right]$ on the spaces we study consists solely of forsaking non separable spaces.

Lebesgue numbers for countable covers of $[0,1]$ exists in ACA_{0}; HBU is not provable in any fragment of second-order arithmetic $\Pi_{k}^{1}-C A_{0}^{\omega}$.
Many 'covering lemmas' imply LIND or HBU: Vitali, Besicovitsch, Banach-Alaoglu, paracompactness, Young-Young, Rademacher,

Vitali (1907) expresses his surprise about the uncountable case of the Vitali covering theorem;

Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion 'there is a countable sub-cover'. RCA ${ }_{0}^{\omega}+$ LIND is conservative over RCA A_{0} and HBU $\leftrightarrow[W K L+$ LIND] (splitting).

The existence of Lebesgue numbers for any open cover of $[0,1]$ implies HBU. Marcone and Guisto (1998) write:
the restriction [on Lebesgue numbers] imposed by the expressive power of the language of $\left[Z_{2}\right]$ on the spaces we study consists solely of forsaking non separable spaces.

Lebesgue numbers for countable covers of $[0,1]$ exists in ACA_{0}; HBU is not provable in any fragment of second-order arithmetic $\Pi_{k}^{1}-C A_{0}^{\omega}$.
Many 'covering lemmas' imply LIND or HBU: Vitali, Besicovitsch, Banach-Alaoglu, paracompactness, Young-Young, Rademacher,

Vitali (1907) expresses his surprise about the uncountable case of the Vitali covering theorem; Diener \& Hedin (2012) however. . .

Step 4: Some conceptual results for HBU and LIND

Step 4: Some conceptual results for HBU and LIND

NON-LINEARITY: By itself, HBU (and same for Θ) is weak:

Step 4: Some conceptual results for HBU and LIND

NON-LINEARITY: By itself, HBU (and same for Θ) is weak:
$R C A_{0}^{\omega}+H B U$ is conservative over $W K L_{0}$

Step 4: Some conceptual results for HBU and LIND

NON-LINEARITY: By itself, HBU (and same for Θ) is weak:

$$
\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU} \text { is conservative over } \mathrm{WKL}_{0}
$$

With other axioms, HBU is powerful and jumps all over the place:

$$
\mathrm{ACA}_{0}^{\omega}+\mathrm{HBU} \text { proves } \mathrm{ATR}_{0}
$$

Step 4: Some conceptual results for HBU and LIND

NON-LINEARITY: By itself, HBU (and same for Θ) is weak:

$$
\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU} \text { is conservative over } \mathrm{WKL}_{0}
$$

With other axioms, HBU is powerful and jumps all over the place:

$$
\mathrm{ACA}_{0}^{\omega}+\mathrm{HBU} \text { proves } \mathrm{ATR}_{0}
$$

$\Pi_{1}^{1}-C A_{0}^{\omega}+\mathrm{HBU}$ proves Δ_{2}^{1}-CA and the Π_{3}^{1}-consequences of Π_{2}^{1}-CA

Step 4: Some conceptual results for HBU and LIND

NON-LINEARITY: By itself, HBU (and same for Θ) is weak:

$$
\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU} \text { is conservative over } \mathrm{WKL}_{0}
$$

With other axioms, HBU is powerful and jumps all over the place:

$$
\mathrm{ACA}_{0}^{\omega}+\mathrm{HBU} \text { proves } \mathrm{ATR}_{0}
$$

$\Pi_{1}^{1}-C A_{0}^{\omega}+\mathrm{HBU}$ proves Δ_{2}^{1}-CA and the Π_{3}^{1}-consequences of Π_{2}^{1}-CA

Theorems of second-order arithmetic NEVER jump anywhere!

Step 4: Some conceptual results for HBU and LIND

Step 4: Some conceptual results for HBU and LIND

COLLAPSE: $\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU}$ proves $\left[\mathrm{ACA}_{0}^{\omega} \leftrightarrow \mathrm{ATR}_{0}^{\omega}\right]$

Step 4: Some conceptual results for HBU and LIND

COLLAPSE: RCA $_{0}^{\omega}+\mathrm{HBU}$ proves $\left[\mathrm{ACA}_{0}^{\omega} \leftrightarrow \mathrm{ATR}_{0}^{\omega}\right]$
The 3rd and 4th Big Five are equivalent; the linear order of RM collapses!

Step 4: Some conceptual results for HBU and LIND

COLLAPSE: $\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU}$ proves $\left[\mathrm{ACA}_{0}^{\omega} \leftrightarrow \mathrm{ATR}_{0}^{\omega}\right.$]
The 3rd and 4th Big Five are equivalent; the linear order of RM collapses!

MORE COLLAPSE: LIND ${ }_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

Step 4: Some conceptual results for HBU and LIND

COLLAPSE: $\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU}$ proves $\left[\mathrm{ACA}_{0}^{\omega} \leftrightarrow \mathrm{ATR}_{0}^{\omega}\right.$]
The 3rd and 4th Big Five are equivalent; the linear order of RM collapses!

MORE COLLAPSE: LIND ${ }_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).
$\underbrace{\mathrm{RCA}_{0}^{\omega}+\text { 'There is a realiser for } \mathrm{LIND}_{0} \text { ' }}_{\text {weak: not stronger than } \mathrm{RCA}_{0}}$ proves $A C A_{0}^{\omega} \leftrightarrow \Pi_{1}^{1}-C A_{0}^{\omega}$

Step 4: Some conceptual results for HBU and LIND

COLLAPSE: RCA $_{0}^{\omega}+\mathrm{HBU}$ proves $\left[\mathrm{ACA}_{0}^{\omega} \leftrightarrow \mathrm{ATR}_{0}^{\omega}\right]$
The 3rd and 4th Big Five are equivalent; the linear order of RM collapses!

MORE COLLAPSE: LIND ${ }_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).
$\underbrace{R C A_{0}^{\omega}+\text { 'There is a realiser for } \text { LIND }_{0}}$ ' proves ACA $_{0}^{\omega} \leftrightarrow \Pi_{1}^{1}-C A_{0}^{\omega}$ weak: not stronger than RCA_{0}

The 3rd and 5th Big Five are equivalent: almost total collapse!

Step 4: Some conceptual results for HBU and LIND

COLLAPSE: $\mathrm{RCA}_{0}^{\omega}+\mathrm{HBU}$ proves $\left[\mathrm{ACA}_{0}^{\omega} \leftrightarrow \mathrm{ATR}_{0}^{\omega}\right.$]
The 3rd and 4th Big Five are equivalent; the linear order of RM collapses!

MORE COLLAPSE: LIND ${ }_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).
$\underbrace{R C A_{0}^{\omega}+\text { 'There is a realiser for } \text { LIND }_{0}}_{\text {weak: not stronger than } R C A_{0}}$ ' proves ACA $_{0}^{\omega} \leftrightarrow \Pi_{1}^{1}-C A_{0}^{\omega}$
The 3rd and 5th Big Five are equivalent: almost total collapse!
Anil Nerode: That's not reverse math, that's topsy turvy math!

Step 4: conceptual results for HBU

DISJUNCTIONS as in $A \leftrightarrow[B \vee C]$ are rare in RM.

Step 4: conceptual results for HBU

DISJUNCTIONS as in $A \leftrightarrow[B \vee C]$ are rare in RM.
However, there are loads of those in higher-order RM:

Step 4: conceptual results for HBU

DISJUNCTIONS as in $A \leftrightarrow[B \vee C]$ are rare in RM.
However, there are loads of those in higher-order RM:
If $\mathrm{ACA}_{0} \rightarrow X \rightarrow \mathrm{WKL}_{0}$, then $\mathrm{RCA}_{0}^{\omega}$ proves $\mathrm{WKL} \leftrightarrow[X \vee \mathrm{HBU}]$.
If $A^{\prime} A_{0} \rightarrow Y$, then RCA ${ }_{0}^{\omega}$ proves $Y \vee$ LIND.
If $A C A_{0} \rightarrow Z$, then $R C A_{0}^{\omega}+W K L$ proves that $Z \vee H B U$.

Step 4: conceptual results for HBU

DISJUNCTIONS as in $A \leftrightarrow[B \vee C]$ are rare in RM.
However, there are loads of those in higher-order RM:
If $\mathrm{ACA}_{0} \rightarrow X \rightarrow \mathrm{WKL}_{0}$, then $\mathrm{RCA}_{0}^{\omega}$ proves $\mathrm{WKL} \leftrightarrow[X \vee \mathrm{HBU}]$.
If $A^{\prime} A_{0} \rightarrow Y$, then RCA ${ }_{0}^{\omega}$ proves $Y \vee$ LIND.
If $A C A_{0} \rightarrow Z$, then $R C A_{0}^{\omega}+W K L$ proves that $Z \vee H B U$.
And many more: the dam really breaks!

Recent work

Recent work

Theorem (Heine)
A continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.

Recent work

Theorem (Heine)
A continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
Dini, Pincherle, and even Bolzano actually proved the following:

Theorem (Uniform Heine)

A continuous $f:[0,1] \rightarrow \mathbb{R}$ has a modulus of uniform continuity; the latter only depends on a modulus of continuity for f.

Recent work

Theorem (Heine)
A continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
Dini, Pincherle, and even Bolzano actually proved the following:

Theorem (Uniform Heine)
 A continuous $f:[0,1] \rightarrow \mathbb{R}$ has a modulus of uniform continuity; the latter only depends on a modulus of continuity for f.

HBU is equivalent to Uniform Heine given countable choice (QF-AC ${ }^{0,1}$).

Recent work

Theorem (Heine)

A continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
Dini, Pincherle, and even Bolzano actually proved the following:

Theorem (Uniform Heine)
 A continuous $f:[0,1] \rightarrow \mathbb{R}$ has a modulus of uniform continuity; the latter only depends on a modulus of continuity for f.

HBU is equivalent to Uniform Heine given countable choice (QF-AC ${ }^{0,1}$). Same for uniform versions of Dini's, Pincherle's, and Fejér's theorems.

Recent work

Theorem (Heine)

A continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
Dini, Pincherle, and even Bolzano actually proved the following:

Theorem (Uniform Heine)
 A continuous $f:[0,1] \rightarrow \mathbb{R}$ has a modulus of uniform continuity; the latter only depends on a modulus of continuity for f.

HBU is equivalent to Uniform Heine given countable choice (QF-AC ${ }^{0,1}$). Same for uniform versions of Dini's, Pincherle's, and Fejér's theorems. The redevelopment of analysis based on the gauge integral (Bartle et al) produces many such uniform theorems.

Recent work

Theorem (Heine)

A continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
Dini, Pincherle, and even Bolzano actually proved the following:

Theorem
 A continuous $f:[0,1] \rightarrow \mathbb{R}$ has a modulus of uniform continuity; the latter only depends on a modulus of continuity for f.

HBU is equivalent to Uniform Heine given countable choice (QF-AC ${ }^{0,1}$). Same for uniform versions of Dini's, Pincherle's, and Fejér's theorems. The redevelopment of analysis based on the gauge integral (Bartle et al) produces many such uniform theorems.

The original Bolzano-Weierstrass thm has produced many such 'uniform' theorems of considerable hardness (namely requring Z_{2}^{ω}). Weierstrass' version of the Bolzano-Weierstrass thm was 'more constructive' (requiring only ACA_{0})'; the former was forgotten by history....

Paper

Most of the aforementioned results are proved in:
On the mathematical and foundational significance of the uncountable (Dag Normann \& Sam Sanders, arXiv)
https://arxiv.org/abs/1711.08939

This paper makes NO use of Nonstandard Analysis.

About that 'predicativist' mathematics. . .

About that 'predicativist' mathematics. . .

Russell-Weyl-Feferman predicativism: rejection of impredicative/self-referential definitions.

About that 'predicativist' mathematics. . .

Russell-Weyl-Feferman predicativism: rejection of impredicative/self-referential definitions. (TT, Coq, Agda, etc)

About that 'predicativist' mathematics. . .

Russell-Weyl-Feferman predicativism: rejection of impredicative/self-referential definitions. (TT, Coq, Agda, etc)
LIND_{0}, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

About that 'predicativist' mathematics. . .

Russell-Weyl-Feferman predicativism: rejection of impredicative/self-referential definitions. (TT, Coq, Agda, etc)

LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

Compatibility problem: Both 'There is a realiser for LIND ${ }_{0}$ ' and Feferman's μ are acceptable in predicative math.

About that 'predicativist' mathematics. . .

Russell-Weyl-Feferman predicativism: rejection of impredicative/self-referential definitions. (TT, Coq, Agda, etc)

LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

Compatibility problem: Both 'There is a realiser for LIND $_{0}$ ' and Feferman's μ are acceptable in predicative math. The combination yields the Suslin functional, not acceptable in predicative math.

About that 'common' core...

About that 'common' core...

Constructive math community: HBU is semi-constructive.

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to ACA_{0}.

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to $A C A_{0}$. HBU requires full second-order arithmetic Z_{2}^{ω}.

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to $A C A_{0}$. HBU requires full second-order arithmetic Z_{2}^{ω}.
LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelof's original lemma (1903).

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to $A C A_{0}$. HBU requires full second-order arithmetic Z_{2}^{ω}.
LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelof's original lemma (1903).

Constructive math community: LIND_{0} is 'neutral' or 'semi-constructive twice-over' (=3/4-constructive?).

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to $A C A_{0}$. HBU requires full second-order arithmetic Z_{2}^{ω}.
LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

Constructive math community: LIND_{0} is 'neutral' or 'semi-constructive twice-over' (=3/4-constructive?).
BUT: the Lindelöf lemma LIND $_{0}$ requires full second-order arithmetic Z_{2}^{ω} !

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to $A C A_{0}$. HBU requires full second-order arithmetic Z_{2}^{ω}.
LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

Constructive math community: LIND_{0} is 'neutral' or 'semi-constructive twice-over' (=3/4-constructive?).
BUT: the Lindelöf lemma LIND $_{0}$ requires full second-order arithmetic Z_{2}^{ω} !
Classically, the 'common core' notion 'constructive' makes no sense!

About that 'common' core...

Constructive math community: HBU is semi-constructive. Diener/Beeson: HBU is more constructive than the sequential compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to $A C A_{0}$. HBU requires full second-order arithmetic Z_{2}^{ω}.

LIND $_{0}$, the Lindelöf lemma for Baire space $\mathbb{N}^{\mathbb{N}}$, follows from Lindelöf's original lemma (1903).

Constructive math community: LIND_{0} is 'neutral' or 'semi-constructive twice-over' (=3/4-constructive?).

BUT: the Lindelöf lemma LIND $_{0}$ requires full second-order arithmetic Z_{2}^{ω} !
Classically, the 'common core' notion 'constructive' makes no sense!
Anil Nerode: Bishop said we should not try to formalise his notion of 'constructive'; these results suggest that Bishop was right!

The actual beginning. . .

was Nonstandard Analysis (NSA)!

The actual beginning. . .

was Nonstandard Analysis (NSA)!
Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.

The actual beginning...

was Nonstandard Analysis (NSA)!
Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.
van den Berg et al (2012, APAL) introduce $S_{\text {st }}$, a version of Gödel's Dialectica interpretation from (the finite type part of) of IST to ZFC.

The actual beginning...

was Nonstandard Analysis (NSA)!

Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.
van den Berg et al (2012, APAL) introduce $S_{\text {st }}$, a version of Gödel's Dialectica interpretation from (the finite type part of) of IST to ZFC. Applying $S_{\text {st }}$ to the nonstandard compactness of $[0,1]$, yields Θ and HBU.

The actual beginning...

was Nonstandard Analysis (NSA)!
Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.
van den Berg et al (2012, APAL) introduce $S_{\text {st }}$, a version of Gödel's Dialectica interpretation from (the finite type part of) of IST to ZFC. Applying $S_{\text {st }}$ to the nonstandard compactness of $[0,1]$, yields Θ and HBU.

In fact, the nonstandard compactness of $[0,1]$ is equivalent to HBU (in a nonstandard version of RCA ${ }_{0}^{\omega}$ due to van den Berg and S.).

The actual beginning...

was Nonstandard Analysis (NSA)!

Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.
van den Berg et al (2012, APAL) introduce $S_{\text {st }}$, a version of Gödel's Dialectica interpretation from (the finite type part of) of IST to ZFC. Applying $S_{\text {st }}$ to the nonstandard compactness of $[0,1]$, yields Θ and HBU.

In fact, the nonstandard compactness of $[0,1]$ is equivalent to HBU (in a nonstandard version of RCA ${ }_{0}^{\omega}$ due to van den Berg and S.). Moreover HBU is the 'metastable version' of nonstandard compactness of $[0,1]$.

The actual beginning...

was Nonstandard Analysis (NSA)!
Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.
van den Berg et al (2012, APAL) introduce $S_{\text {st }}$, a version of Gödel's Dialectica interpretation from (the finite type part of) of IST to ZFC. Applying $S_{\text {st }}$ to the nonstandard compactness of $[0,1]$, yields Θ and HBU.

In fact, the nonstandard compactness of $[0,1]$ is equivalent to HBU (in a nonstandard version of RCA ${ }_{0}^{\omega}$ due to van den Berg and S.). Moreover HBU is the 'metastable version' of nonstandard compactness of $[0,1]$.

Most results have two proofs: one via NSA and $S_{\text {st }}$ (weak base theory; terms of Gödel's T),

The actual beginning...

was Nonstandard Analysis (NSA)!
Robinson's theorem introduces the notion nonstandard compactness, a NSA-definition of compactness stating for every object, there is a standard object infinitely close.
van den Berg et al (2012, APAL) introduce $S_{\text {st }}$, a version of Gödel's Dialectica interpretation from (the finite type part of) of IST to ZFC. Applying $S_{\text {st }}$ to the nonstandard compactness of $[0,1]$, yields Θ and HBU.

In fact, the nonstandard compactness of $[0,1]$ is equivalent to HBU (in a nonstandard version of RCA ${ }_{0}^{\omega}$ due to van den Berg and S.). Moreover HBU is the 'metastable version' of nonstandard compactness of $[0,1]$.

Most results have two proofs: one via NSA and $S_{\text {st }}$ (weak base theory; terms of Gödel's T), and one via higher-order recursion theory (more general results, greater scope). Most of the above is both Normann-S.

Final Thoughts

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund auch in dich hinein. (Nietzsche)

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund auch in dich hinein. (Nietzsche)

We thank CAS-LMU Munich, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund auch in dich hinein. (Nietzsche)

We thank CAS-LMU Munich, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

[^0]: 左 RCA_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.

[^1]: 有 $R C A_{0}$ proves Interm. value thm, Soundness thm, Existence of alg. clos.

