A predicative variant of the effective topos

Samuele Maschio
(j.w.w. Maria Emilia Maietti)

Università
DEGLI Studi di Padova

Dipartimento di Matematica Università di Padova

Second Workshop on Mathematical Logic and its Applications Kanazawa, 5-9 march 2018

From the Minimalist Foundation to a predicative tripos

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:
an intensional level (to extract computational contents of math)

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:
an intensional level (to extract computational contents of math) an extensional level (actual mathematics)

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:
an intensional level (to extract computational contents of math) an extensional level (actual mathematics) connected via a setoid interpretation

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:
an intensional level (to extract computational contents of math) an extensional level (actual mathematics) connected via a setoid interpretation both contain four kinds of types:
sets, collections, small propositions, propositions (in context):

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:
an intensional level (to extract computational contents of math) an extensional level (actual mathematics)
connected via a setoid interpretation both contain four kinds of types:
sets, collections, small propositions, propositions (in context):

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists of two levels:
an intensional level (to extract computational contents of math) an extensional level (actual mathematics)
connected via a setoid interpretation both contain four kinds of types:
sets, collections, small propositions, propositions (in context):
mTT
setoid emTT

interpretation

idea: mimic this structure to define a predicative version of the effective topos from a predicative effective tripos.

A model for the intensional level

Concrete starting point: the model for $\mathbf{m T T}+\mathbf{C T}+\mathbf{A C}$ in (Ishihara, Maietti, Maschio, Streicher).

A model for the intensional level

Concrete starting point: the model for $\mathbf{m T T}+\mathbf{C T}+\mathbf{A C}$ in (Ishihara, Maietti, Maschio, Streicher). this interpretation is performed in Feferman's $\widehat{D_{1}}$

A model for the intensional level

Concrete starting point: the model for $\mathbf{m T T}+\mathbf{C T}+\mathbf{A C}$ in (Ishihara, Maietti, Maschio, Streicher). this interpretation is performed in Feferman's $\widehat{I D_{1}}$ via a variant of Martin-Löf type theory (props-as-types)

A model for the intensional level

Concrete starting point: the model for $\mathbf{m T T}+\mathbf{C T}+\mathbf{A C}$ in (Ishihara, Maietti, Maschio, Streicher).
this interpretation is performed in Feferman's $\widehat{I D_{1}}$
via a variant of Martin-Löf type theory (props-as-types)
not a categorical model: problems with interpretation of λ-abstraction and substitution (weak exponentials)

A model for the intensional level

Concrete starting point: the model for $\mathbf{m T T}+\mathbf{C T}+\mathbf{A C}$ in (Ishihara, Maietti, Maschio, Streicher).
this interpretation is performed in Feferman's $\widehat{I D_{1}}$
via a variant of Martin-Löf type theory (props-as-types)
not a categorical model: problems with interpretation of λ-abstraction and substitution (weak exponentials)
however one can extract some categorical structure giving rise to a predicative version of a tripos

A model for the intensional level

Concrete starting point: the model for $\mathbf{m T T}+\mathbf{C T}+\mathbf{A C}$ in (Ishihara, Maietti, Maschio, Streicher).
this interpretation is performed in Feferman's $\widehat{I D_{1}}$
via a variant of Martin-Löf type theory (props-as-types)
not a categorical model: problems with interpretation of λ-abstraction and substitution (weak exponentials)
however one can extract some categorical structure giving rise to a predicative version of a tripos

The predicative effective tripos

The base category

\mathcal{C}_{r} :

The base category

\mathcal{C}_{r} :

obj $\mathrm{A}:=\left\{x \mid \varphi_{\mathrm{A}}(x)\right\}, \varphi_{\mathrm{A}}(x)$ formula of $\widehat{\mathrm{D}_{1}}$ as usual $x \in \mathrm{~A}$ is $\varphi_{\mathrm{A}}(x)$;

The base category

$$
\begin{aligned}
& \mathcal{C}_{r}: \\
& \text { obj } \mathrm{A}:=\left\{x \mid \varphi_{\mathrm{A}}(x)\right\}, \varphi_{\mathrm{A}}(x) \text { formula of } \widehat{I \mathrm{D}_{1}} \\
& \quad \text { as usual } x \in \mathrm{~A} \text { is } \varphi_{\mathrm{A}}(x) ; \\
& \text { arr }[\mathbf{n}]_{\approx_{\mathrm{A}, \mathrm{~B}}}: \mathrm{A} \rightarrow \mathrm{~B}
\end{aligned}
$$

The base category

```
\mathcal{C}
```



```
        as usual }x\in\textrm{A}\mathrm{ is }\mp@subsup{\varphi}{\textrm{A}}{(}(x)\mathrm{ ;
    arr [n] [ ( 
        n numeral;
```


The base category

$$
\begin{aligned}
& \mathcal{C}_{r}: \\
& \text { obj } \mathrm{A}:=\left\{x \mid \varphi_{\mathrm{A}}(x)\right\}, \varphi_{\mathrm{A}}(x) \text { formula of } \widehat{\mathrm{D}_{1}} \\
& \text { as usual } x \in \mathrm{~A} \text { is } \varphi_{\mathrm{A}}(x) ; \\
& \text { arr }[\mathbf{n}]_{\widetilde{A}_{\mathrm{A}, \mathrm{~B}}}: \mathrm{A} \rightarrow \mathrm{~B} \\
& \\
& \mathbf{n} \text { numeral; } \\
& \quad x \in \mathrm{~A} \vdash_{\overparen{D_{1}}}\{\mathbf{n}\}(x) \varepsilon \mathrm{B} ;
\end{aligned}
$$

The base category

$\mathcal{C}_{r}:$

obj $\mathrm{A}:=\left\{x \mid \varphi_{\mathrm{A}}(x)\right\}, \varphi_{\mathrm{A}}(x)$ formula of $\widehat{\mathrm{D}_{1}}$ as usual $x \in \mathrm{~A}$ is $\varphi_{\mathrm{A}}(x)$;
$\operatorname{arr}[\mathbf{n}]_{\overbrace{A, B}}: A \rightarrow B$
n numeral;
$x \in \mathrm{~A} \vdash_{\overparen{D_{1}}}\{\mathbf{n}\}(x) \varepsilon \mathrm{B}$;
$\mathbf{n} \approx_{A, B} \mathbf{m}$ is $x \in A \vdash_{\widehat{D_{1}}}\{\mathbf{n}\}(x)=\{\mathbf{m}\}(x)$.

The base category

$$
\mathcal{C}_{r}:
$$

$$
\text { obj } \mathrm{A}:=\left\{x \mid \varphi_{\mathrm{A}}(x)\right\}, \varphi_{\mathrm{A}}(x) \text { formula of } \widehat{\mathrm{D}_{1}}
$$

$$
\text { as usual } x \in \mathrm{~A} \text { is } \varphi_{\mathrm{A}}(x)
$$

$$
\operatorname{arr}[\mathbf{n}]_{\approx_{A, B}}: A \rightarrow B
$$

n numeral;

$$
x \in \mathrm{~A} \vdash_{\widehat{D}_{1}}\{\mathbf{n}\}(x) \varepsilon \mathrm{B} ;
$$

$$
\mathbf{n} \approx_{\mathrm{A}, \mathrm{~B}} \mathbf{m} \text { is } x \in \mathrm{~A} \vdash_{\sqrt{D_{1}}}\{\mathbf{n}\}(x)=\{\mathbf{m}\}(x) .
$$

\mathcal{C}_{r} is a finitely complete weakly locally cartesian closed category with parameterized list objects.

Collections over \mathcal{C}_{r}

Define over \mathcal{C}_{r} an indexed category representing dependent collections

$$
\text { Col }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Cat }
$$

Collections over \mathcal{C}_{r}

Define over \mathcal{C}_{r} an indexed category representing dependent collections

$$
\text { Col }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Cat }
$$

$\operatorname{Col}^{r}(A)$:

Collections over \mathcal{C}_{r}

Define over \mathcal{C}_{r} an indexed category representing dependent collections

$$
\text { Col }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Cat }
$$

$\operatorname{Col}^{r}(A)$:
objects: definable classes with a parameter over the context A

Collections over \mathcal{C}_{r}

Define over \mathcal{C}_{r} an indexed category representing dependent collections

$$
\text { Col }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Cat }
$$

$\operatorname{Col}^{r}(A)$:
objects: definable classes with a parameter over the context A
arrows: recursive functions (possibly depending on the context) represented by numerals

Collections over \mathcal{C}_{r}

Define over \mathcal{C}_{r} an indexed category representing dependent collections

$$
\mathbf{C o l}^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Cat }
$$

$\operatorname{Col}^{r}(A)$:
objects: definable classes with a parameter over the context A
arrows: recursive functions (possibly depending on the context) represented by numerals
$\mathbf{C o l}^{r}([\mathbf{n}])$ are substitution functors.

Collections over \mathcal{C}_{r}

Define over \mathcal{C}_{r} an indexed category representing dependent collections

$$
\mathbf{C o l}^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Cat }
$$

$\operatorname{Col}^{r}(A)$:
objects: definable classes with a parameter over the context A
arrows: recursive functions (possibly depending on the context) represented by numerals
$\mathbf{C o l}^{r}([\mathbf{n}])$ are substitution functors.

Propositions over \mathcal{C}_{r}

Define over \mathcal{C}_{r} a first-order hyperdoctrine

$$
\text { Prop }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Heyt }
$$

Propositions over \mathcal{C}_{r}

Define over \mathcal{C}_{r} a first-order hyperdoctrine

$$
\text { Prop }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Heyt }
$$

the posetal reflection of the doctrine of Kleene realizability for which

Propositions over \mathcal{C}_{r}

Define over \mathcal{C}_{r} a first-order hyperdoctrine

$$
\text { Prop }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Heyt }
$$

the posetal reflection of the doctrine of Kleene realizability for which realized propositions over A are formulas $P(x, y)$ with at most x, y free (we write $y \Vdash P(x)$ instead of $P(x, y)$) for which

$$
x \Vdash P(y) \vdash_{\widehat{\nabla_{1}}} x \varepsilon A
$$

Propositions over \mathcal{C}_{r}

Define over \mathcal{C}_{r} a first-order hyperdoctrine

$$
\text { Prop }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Heyt }
$$

the posetal reflection of the doctrine of Kleene realizability for which realized propositions over A are formulas $P(x, y)$ with at most x, y free (we write $y \Vdash P(x)$ instead of $P(x, y)$) for which

$$
x \Vdash P(y) \vdash_{\widehat{\nabla_{1}}} x \varepsilon A
$$

$P(x, y) \leq Q(x, y)$ over A if there exists a numeral \mathbf{r} for which

$$
y \Vdash P(x) \vdash_{\overparen{\varpi_{1}}}\{\mathbf{r}\}(x, y) \Vdash Q(x)
$$

Propositions over \mathcal{C}_{r}

Define over \mathcal{C}_{r} a first-order hyperdoctrine

$$
\text { Prop }^{r}: \mathcal{C}_{r}^{o p} \rightarrow \text { Heyt }
$$

the posetal reflection of the doctrine of Kleene realizability for which realized propositions over A are formulas $P(x, y)$ with at most x, y free (we write $y \Vdash P(x)$ instead of $P(x, y)$) for which

$$
x \Vdash P(y) \vdash_{\overparen{\mathbb{D}_{1}}} x \varepsilon A
$$

$P(x, y) \leq Q(x, y)$ over A if there exists a numeral \mathbf{r} for which

$$
y \Vdash P(x) \vdash_{\overparen{\varpi_{1}}}\{\mathbf{r}\}(x, y) \Vdash Q(x)
$$

different from the tripos defining the effective topos, where x is not a natural number in general

$$
y \Vdash P(x) \vdash_{\sqrt{\sigma_{1}}}\{\mathbf{r}\}(y) \Vdash Q(x)
$$

Sets and small propositions

Sets and small propositions

Last thing to do:
there are notions of sets and small propositions to capture.

Sets and small propositions

Last thing to do:
there are notions of sets and small propositions to capture.
define predicates set $(x), x \in y$ and $x \notin y$ in $\widehat{\mathrm{D}_{1}}$ to encode Martin-Löf sets (closed under empty set, singleton, $+, \Sigma, \Pi$, List, Id) and their realizability interpretation;

Sets and small propositions

Last thing to do:
there are notions of sets and small propositions to capture.
define predicates set $(x), x \in y$ and $x \notin y$ in $\widehat{\mathrm{D}_{1}}$ to encode Martin-Löf sets (closed under empty set, singleton, $+, \Sigma, \Pi$, List, Id) and their realizability interpretation;
define a universe of sets U_{s} in the base category;

Sets and small propositions

Last thing to do:
there are notions of sets and small propositions to capture.
define predicates set $(x), x \in y$ and $x \notin y$ in $\widehat{\mathrm{D}_{1}}$ to encode Martin-Löf sets (closed under empty set, singleton, $+, \Sigma, \Pi$, List, Id) and their realizability interpretation;
define a universe of sets U_{s} in the base category;
define an indexed category Set ${ }^{r}$

Sets and small propositions

Last thing to do:
there are notions of sets and small propositions to capture.
define predicates set $(x), x \in y$ and $x \notin y$ in $\widehat{\mathrm{D}_{1}}$ to encode Martin-Löf sets (closed under empty set, singleton, $+, \Sigma, \Pi$, List, Id) and their realizability interpretation;
define a universe of sets U_{s} in the base category;
define an indexed category Set ${ }^{r}$
and small propositions $\overline{\operatorname{Prop}}_{s}{ }^{r}$ as a doctrine over the base category.

The predicative effective topos

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{o p} \rightarrow$ Heyt is a first-order hyperdoctrine over a cartesian category \mathbb{C},

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{o p} \rightarrow$ Heyt is a first-order hyperdoctrine over a cartesian category \mathbb{C}, one can perform the elementary quotient completion (Maietti, Rosolini)

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{o p} \rightarrow$ Heyt is a first-order hyperdoctrine over a cartesian category \mathbb{C}, one can perform the elementary quotient completion (Maietti, Rosolini) $\overline{\mathbf{p}}: \mathcal{Q}_{\mathbf{p}} \rightarrow$ Heyt having all quotients of $\overline{\mathbf{p}}$-equivalence relations:

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{o p} \rightarrow$ Heyt is a first-order hyperdoctrine over a cartesian category \mathbb{C}, one can perform the elementary quotient completion (Maietti, Rosolini) $\overline{\mathbf{p}}: \mathcal{Q}_{\mathbf{p}} \rightarrow$ Heyt having all quotients of $\overline{\mathbf{p}}$-equivalence relations:
objects of $\mathcal{Q}_{\mathbf{p}}: A=\left(|A|, \sim_{A}\right)$,
$|A|$ is an object of \mathbb{C} and
$\sim_{A} \in \mathbf{p}(|A| \times|A|)$ is an \mathbf{p}-equivalence relation on $|A|$

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{o p} \rightarrow$ Heyt is a first-order hyperdoctrine over a cartesian category \mathbb{C}, one can perform the elementary quotient completion (Maietti, Rosolini) $\overline{\mathbf{p}}: \mathcal{Q}_{\mathbf{p}} \rightarrow$ Heyt having all quotients of $\overline{\mathbf{p}}$-equivalence relations:
objects of $\mathcal{Q}_{\mathbf{p}}: A=\left(|A|, \sim_{A}\right)$,
$|A|$ is an object of \mathbb{C} and
$\sim_{A} \in \mathbf{p}(|A| \times|A|)$ is an \mathbf{p}-equivalence relation on $|A|$
arrow in $\mathcal{Q}_{\mathbf{p}}$ from A to B
equivalence class of arrows $f:|A| \rightarrow|B|$ of \mathbb{C}
respecting equivalence relations: $x \sim_{A} y \vdash_{p} f(x) \sim_{B} f(y)$,
w.r.t. to equivalence relation: $f \equiv g$ iff $x \in A \vdash_{p} f(x) \sim_{B} g(x)$.

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{o p} \rightarrow$ Heyt is a first-order hyperdoctrine over a cartesian category \mathbb{C}, one can perform the elementary quotient completion (Maietti, Rosolini) $\overline{\mathbf{p}}: \mathcal{Q}_{\mathbf{p}} \rightarrow$ Heyt having all quotients of $\overline{\mathbf{p}}$-equivalence relations:
objects of $\mathcal{Q}_{\mathbf{p}}: A=\left(|A|, \sim_{A}\right)$,
$|A|$ is an object of \mathbb{C} and
$\sim_{A} \in \mathbf{p}(|A| \times|A|)$ is an \mathbf{p}-equivalence relation on $|A|$
arrow in $\mathcal{Q}_{\mathbf{p}}$ from A to B
equivalence class of arrows $f:|A| \rightarrow|B|$ of \mathbb{C}
respecting equivalence relations: $x \sim_{A} y \vdash_{p} f(x) \sim_{B} f(y)$,
w.r.t. to equivalence relation: $f \equiv g$ iff $x \in A \vdash_{\mathfrak{p}} f(x) \sim_{B} g(x)$.
$\alpha \in \overline{\mathbf{p}}(A)$ iff $\alpha \in \mathbf{p}(|A|)$ and $\alpha(x) \wedge x \sim_{A} y \vdash_{\mathbf{p}} \alpha(y)$
order is inherited from $\mathbf{p}(|A|)$.

The predicative effective topos

$$
p \mathcal{E} f f:=\mathcal{Q}_{\text {Prop }}
$$

The predicative effective topos

$$
\begin{aligned}
& p \mathcal{E} f f:=\mathcal{Q}_{\text {Prop }^{r}} \\
& p \mathcal{E} f_{\text {Prop }}:=\overline{\text { Prop }^{r}}
\end{aligned}
$$

The predicative effective topos

$$
\begin{aligned}
& p \mathcal{E} f f:=\mathcal{Q}_{\text {Prop }^{r}} \\
& p \mathcal{E} f f_{\text {Prop }}:=\overline{\operatorname{Prop}^{r}} \\
& \alpha \in p \mathcal{E} f_{\text {Prop }_{s}}\left(A, \sim_{A}\right) \text { iff } \alpha \in p \mathcal{E} f f_{\text {Prop }}\left(A, \sim_{A}\right) \cap \operatorname{Prop}_{s}^{r}(|A|)
\end{aligned}
$$

The predicative effective topos

```
\(p \mathcal{E f f}:=\mathcal{Q}_{\text {Prop }}{ }^{r}\)
\(p \mathcal{E} f_{\text {Prop }}:=\overline{\text { Prop }^{r}}\)
\(\alpha \in p \mathcal{E} f f_{\text {Prop }_{s}}\left(A, \sim_{A}\right)\) iff \(\alpha \in p \mathcal{E f f}\) Prop \(\left(A, \sim_{A}\right) \cap \operatorname{Prop}_{s}^{r}(|A|)\)
```

one can also define fibrations of collections (codomain fibration) and of sets over $p \mathcal{E} f f$.

The predicative effective topos

```
\(p \mathcal{E f f}:=\mathcal{Q}_{\text {Prop }}{ }^{r}\)
\(p \mathcal{E} f_{\text {Prop }}:=\overline{\text { Prop }^{r}}\)
\(\alpha \in p \mathcal{E} f f_{\text {Prop }_{s}}\left(A, \sim_{A}\right)\) iff \(\alpha \in p \mathcal{E f f}\) Prop \(\left(A, \sim_{A}\right) \cap \operatorname{Prop}_{s}^{r}(|A|)\)
```

one can also define fibrations of collections (codomain fibration) and of sets over $p \mathcal{E} f f$.

Properties of $p \mathcal{E} f f$

$p \mathcal{E f f}$ is a locally cartesian closed list-arithmetic pretopos

Properties of $p \mathcal{E f f}$

$p \mathcal{E f f}$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p \mathcal{E} f f_{\text {Prop }_{s}}$, i.e.

$$
p \mathcal{E f} \mathrm{Frop}_{s}(-) \simeq p \mathcal{E} f f(-, \Omega)
$$

Properties of $p \mathcal{E f f}$

$p \mathcal{E} f f$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p \mathcal{E} f f_{\text {Prop }_{s}}$, i.e.

$$
p \mathcal{E} f f_{\text {Prop }_{s}}(-) \simeq p \mathcal{E} f f(-, \Omega)
$$

But

$$
\text { Prop }^{r} \equiv \mathbf{w S u b}_{\mathcal{C}_{r}}
$$

Properties of $p \mathcal{E f f}$

$p \mathcal{E f f}$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p \mathcal{E} f f_{\text {Prop }_{s}}$, i.e.

$$
p \mathcal{E} f f_{\text {Prop }_{s}}(-) \simeq p \mathcal{E} f f(-, \Omega)
$$

But

$$
\text { Prop }^{r} \equiv \mathbf{w S u b}_{\mathcal{C}_{r}}
$$

$$
\begin{gathered}
\Downarrow \\
\text { pEff }_{\text {Prop }} \equiv \text { Sub }_{p \mathcal{E f f}}
\end{gathered}
$$

Properties of $p \mathcal{E f f}$

$p \mathcal{E f f}$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p \mathcal{E} f f_{\text {Prop }_{s}}$, i.e.

$$
p \mathcal{E} f f_{\text {Prop }_{s}}(-) \simeq p \mathcal{E} f f(-, \Omega)
$$

But

$$
\text { Prop }^{r} \equiv \mathbf{w S u b}_{\mathcal{C}_{r}}
$$

This is a predicative variant of a topos.

Properties of $p \mathcal{E f f}$

$p \mathcal{E f f}$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p \mathcal{E} f f_{\text {Prop }_{s}}$, i.e.

$$
p \mathcal{E} f f_{\text {Prop }_{s}}(-) \simeq p \mathcal{E} f f(-, \Omega)
$$

But

$$
\text { Prop }^{r} \equiv \mathbf{w S u b}_{\mathcal{C}_{r}}
$$

This is a predicative variant of a topos.

Relation with the Effective Topos

The effective topos

In ZFC

The effective topos

In ZFC

Assemblies (Asm):
objects: $(A, P), A$ set, $P: A \rightarrow \mathcal{P}(\mathbb{N}), P(a) \neq \varnothing$ for every $a \in A$. arrows $f:(A, P) \rightarrow(B, Q), f: A \rightarrow B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

The effective topos

In ZFC
Assemblies (Asm):
objects: $(A, P), A$ set, $P: A \rightarrow \mathcal{P}(\mathbb{N}), P(a) \neq \varnothing$ for every $a \in A$. arrows $f:(A, P) \rightarrow(B, Q), f: A \rightarrow B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

Partitioned Assemblies (pAsm): full subcategory of Asm objects: $\# P(a)=1$ for every $a \in A$

The effective topos

In ZFC
Assemblies (Asm):
objects: $(A, P), A$ set, $P: A \rightarrow \mathcal{P}(\mathbb{N}), P(a) \neq \varnothing$ for every $a \in A$.
arrows $f:(A, P) \rightarrow(B, Q), f: A \rightarrow B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

Partitioned Assemblies (pAsm): full subcategory of Asm objects: $\# P(a)=1$ for every $a \in A$

Rec: full subcategory of Asm
objects: $A \subseteq \mathbb{N}$ and $P(a)=\{a\}$ for every $a \in A$.

The effective topos

In ZFC
Assemblies (Asm):
objects: $(A, P), A$ set, $P: A \rightarrow \mathcal{P}(\mathbb{N}), P(a) \neq \varnothing$ for every $a \in A$.
arrows $f:(A, P) \rightarrow(B, Q), f: A \rightarrow B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

Partitioned Assemblies (pAsm): full subcategory of Asm
objects: $\# P(a)=1$ for every $a \in A$

Rec: full subcategory of Asm
objects: $A \subseteq \mathbb{N}$ and $P(a)=\{a\}$ for every $a \in A$.
Rec isomorphic to the category of subsets of natural numbers and (restrictions of) recursive functions between them.

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{E f f}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;
(3) as ex/lex completion (Robinson, Rosolini)
of a category of partitioned assemblies pAsm.

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;
(3) as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.
\mathcal{C}_{r} is a rendering of Rec in $\widehat{I D_{1}}$ and Prop^{r} is equivalent to wSub:

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;
(3) as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.
\mathcal{C}_{r} is a rendering of Rec in $\widehat{I D_{1}}$ and Prop r is equivalent to wSub: in this case elementary quotient completion is equivalent to ex/lex completion.

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;
(3) as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.
\mathcal{C}_{r} is a rendering of Rec in $\widehat{I D_{1}}$ and Prop r is equivalent to wSub: in this case elementary quotient completion is equivalent to ex/lex completion.
Hence our construction is a version of 3 restricted to Rec

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;
(3) as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.
\mathcal{C}_{r} is a rendering of Rec in $\widehat{I D_{1}}$ and Prop r is equivalent to wSub: in this case elementary quotient completion is equivalent to ex/lex completion.
Hence our construction is a version of 3 restricted to Rec (weak subobjects in Rec coincide with weak subobjects in pAsm)

The effective topos $\mathcal{E} f f$ can be introduced in three different ways:
(1) via tripos-to-topos construction (Hyland, Johnstone, Pitts)
from $\mathbf{p}_{\text {Eff }}:$ Set $^{o p} \rightarrow$ preHeyt;
with Set from ZFC;
(2) as ex/reg completion (Freyd, Carboni, Scedrov)
of a category of assemblies Asm;
(3) as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.
\mathcal{C}_{r} is a rendering of Rec in $\widehat{I D_{1}}$ and Prop r is equivalent to wSub: in this case elementary quotient completion is equivalent to ex/lex completion.
Hence our construction is a version of 3 restricted to Rec (weak subobjects in Rec coincide with weak subobjects in pAsm) expressed in $\widehat{D_{1}}$.

References

(1) M. Hyland, P. Johnstone, A. Pitts. Tripos theory, 1980.
(2) M. Hyland. The Effective Topos, 1981.
(0) M. E. Maietti, G. Sambin. Towards a minimalist foundation for constructive mathematics, 2005.
(1) M. E. Maietti. A minimalist two-level foundation for constructive mathematics, 2009.

- M. E. Maietti, G. Rosolini. Quotient completion for the foundation of constructive mathematics, 2013.
(0) H.Ishihara, M.E.Maietti, S. Maschio, T.Streicher. Consistency of the intensional level of the Minimalist Foundation with Church's Thesis and Axiom of Choice, to appear in Archive for Mathematical Logic.
(1) M. E. Maietti, S. Maschio. A strictly predicative variant of Hyland's Effective Topos, submitted.

