A predicative variant of the effective topos

Samuele Maschio

(j.w.w. Maria Emilia Maietti)

Dipartimento di Matematica Università di Padova

Second Workshop on Mathematical Logic and its Applications Kanazawa, 5-9 march 2018

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

From the Minimalist Foundation to a predicative tripos

From the Minimalist Foundation to a predicative tripos

From the Minimalist Foundation to a predicative tripos

The **Minimalist Foundation** (Maietti, Sambin 2005, Maietti 2009) consists of two levels:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

an intensional level (to extract computational contents of math)

an **intensional level** (to extract computational contents of math) an **extensional level** (actual mathematics)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

an **intensional level** (to extract computational contents of math) an **extensional level** (actual mathematics) connected via a setoid interpretation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

an intensional level (to extract computational contents of math)

an extensional level (actual mathematics)

connected via a setoid interpretation

both contain four kinds of types:

sets, collections, small propositions, propositions (in context):

an intensional level (to extract computational contents of math)

an extensional level (actual mathematics)

connected via a setoid interpretation

both contain four kinds of types:

sets, collections, small propositions, propositions (in context):

an intensional level (to extract computational contents of math)

an extensional level (actual mathematics)

connected via a setoid interpretation

both contain four kinds of types:

sets, collections, small propositions, propositions (in context):

idea: mimic this structure to define a predicative version of the effective topos from a predicative effective tripos.

Concrete starting point: the model for **mTT** + **CT** + **AC** in (Ishihara, Maietti, Maschio, Streicher).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Concrete starting point: the model for mTT + CT + ACin (Ishihara, Maietti, Maschio, Streicher). this interpretation is performed in Feferman's \widehat{ID}_1

Concrete starting point: the model for mTT + CT + ACin (Ishihara, Maietti, Maschio, Streicher). this interpretation is performed in Feferman's $\widehat{ID_1}$ via a variant of Martin-Löf type theory (props-as-types)

Concrete starting point: the model for mTT + CT + ACin (Ishihara, Maietti, Maschio, Streicher). this interpretation is performed in Feferman's \widehat{ID}_1 via a variant of Martin-Löf type theory (props-as-types) not a **categorical** model: problems with interpretation of λ -abstraction and substitution (weak exponentials)

- Concrete starting point: the model for mTT + CT + AC
- in (Ishihara, Maietti, Maschio, Streicher).
- this interpretation is performed in Feferman's $\widehat{\textit{ID}}_1$
- via a variant of Martin-Löf type theory (props-as-types)
- not a **categorical** model: problems with interpretation of λ -abstraction and substitution (weak exponentials)

however one can extract some categorical structure giving rise to a predicative version of a tripos

- Concrete starting point: the model for mTT + CT + AC
- in (Ishihara, Maietti, Maschio, Streicher).
- this interpretation is performed in Feferman's $\widehat{\textit{ID}}_1$
- via a variant of Martin-Löf type theory (props-as-types)
- not a **categorical** model: problems with interpretation of λ -abstraction and substitution (weak exponentials)

however one can extract some categorical structure giving rise to a predicative version of a tripos

The predicative effective tripos

<□ > < @ > < E > < E > E のQ @

The base category

 C_r :

The base category

 C_r :

obj A := {
$$x | \varphi_A(x)$$
}, $\varphi_A(x)$ formula of $\widehat{ID_1}$
as usual $x \in A$ is $\varphi_A(x)$;

The base category

 C_r :

obj A := {
$$x | \varphi_A(x)$$
}, $\varphi_A(x)$ formula of $\widehat{ID_1}$
as usual $x \in A$ is $\varphi_A(x)$;

 $\mathsf{arr} \ [\boldsymbol{n}]_{\approx_{\mathsf{A},\mathsf{B}}}:\mathsf{A}\to\mathsf{B}$

The base category

 C_r :

obj A := {
$$x | \varphi_A(x)$$
}, $\varphi_A(x)$ formula of $\widehat{ID_1}$
as usual $x \in A$ is $\varphi_A(x)$;

 $\begin{array}{l} \text{arr} \ \left[\boldsymbol{n} \right]_{\approx_{A,B}} : A \to B \\ \boldsymbol{n} \text{ numeral}; \end{array}$

The base category

 C_r :

obj A := {
$$x | \varphi_A(x)$$
}, $\varphi_A(x)$ formula of $\widehat{ID_1}$
as usual $x \in A$ is $\varphi_A(x)$;

arr
$$[\mathbf{n}]_{\approx_{A,B}} : A \to B$$

 \mathbf{n} numeral;
 $x \in A \vdash_{\widehat{D_1}} {\mathbf{n}}(x) \in B;$

The base category

 C_r :

obj A := {
$$x | \varphi_A(x)$$
}, $\varphi_A(x)$ formula of $\widehat{ID_1}$
as usual $x \in A$ is $\varphi_A(x)$;

arr
$$[\mathbf{n}]_{\approx_{A,B}} : A \to B$$

n numeral;
 $x \in A \vdash_{\widehat{D_1}} {\mathbf{n}}(x) \in B;$
 $\mathbf{n} \approx_{A,B} \mathbf{m} \text{ is } x \in A \vdash_{\widehat{D_1}} {\mathbf{n}}(x) = {\mathbf{m}}(x).$

The base category

 C_r :

obj A := {
$$x | \varphi_A(x)$$
}, $\varphi_A(x)$ formula of $\widehat{ID_1}$
as usual $x \in A$ is $\varphi_A(x)$;

arr
$$[\mathbf{n}]_{\approx_{A,B}} : A \to B$$

 \mathbf{n} numeral;
 $x \in A \vdash_{\widehat{D_1}} {\mathbf{n}}(x) \in B;$
 $\mathbf{n} \approx_{A,B} \mathbf{m}$ is $x \in A \vdash_{\widehat{D_1}} {\mathbf{n}}(x) = {\mathbf{m}}(x).$

 C_r is a **finitely complete weakly locally cartesian closed** category with parameterized list objects.

Collections over C_r

Define over \mathcal{C}_r an indexed category representing dependent collections

 $\mathbf{Col}^r : \mathcal{C}_r^{op} \to \mathbf{Cat}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Collections over C_r

Define over C_r an indexed category representing dependent collections

 $\mathbf{Col}^r : \mathcal{C}_r^{op} \to \mathbf{Cat}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $Col^{r}(A)$:

Collections over C_r

Define over C_r an indexed category representing dependent collections

 $\mathbf{Col}^r : \mathcal{C}_r^{op} \to \mathbf{Cat}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Col^{*r*}(*A*): **objects**: definable classes with a parameter over the context *A*

Collections over C_r

Define over C_r an indexed category representing dependent collections

 $\mathbf{Col}^r : \mathcal{C}_r^{op} \to \mathbf{Cat}$

 $\mathbf{Col}^{r}(A)$:

objects: definable classes with a parameter over the context A **arrows**: recursive functions (possibly depending on the context) represented by numerals

Collections over C_r

Define over C_r an indexed category representing dependent collections

 $\mathbf{Col}^r : \mathcal{C}_r^{op} \to \mathbf{Cat}$

 $\mathbf{Col}^{r}(A)$:

objects: definable classes with a parameter over the context A **arrows**: recursive functions (possibly depending on the context) represented by numerals

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $Col^{r}([n])$ are substitution functors.

Collections over C_r

Define over C_r an indexed category representing dependent collections

 $\mathbf{Col}^r : \mathcal{C}_r^{op} \to \mathbf{Cat}$

 $\mathbf{Col}^{r}(A)$:

objects: definable classes with a parameter over the context A **arrows**: recursive functions (possibly depending on the context) represented by numerals

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $Col^{r}([n])$ are substitution functors.

Propositions over C_r

Define over C_r a first-order hyperdoctrine

 $\operatorname{Prop}^{r} : \mathcal{C}_{r}^{op} \to \operatorname{Heyt}$

(ロ)、(型)、(E)、(E)、 E) の(の)

Propositions over C_r

Define over C_r a first-order hyperdoctrine

 $\mathbf{Prop}^r : \mathcal{C}_r^{op} \to \mathbf{Heyt}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

the posetal reflection of the doctrine of Kleene realizability for which

Propositions over C_r

Define over C_r a first-order hyperdoctrine

 $\mathbf{Prop}^r : \mathcal{C}_r^{op} \to \mathbf{Heyt}$

the posetal reflection of the doctrine of Kleene realizability for which **realized propositions** over A are formulas P(x,y) with at most x, y free (we write $y \Vdash P(x)$ instead of P(x,y)) for which

$$x \Vdash P(y) \vdash_{_{\widehat{\mathsf{ID}_1}}} x \varepsilon A$$

Propositions over C_r

Define over C_r a first-order hyperdoctrine

 $\mathbf{Prop}^r : \mathcal{C}_r^{op} \to \mathbf{Heyt}$

the posetal reflection of the doctrine of Kleene realizability for which **realized propositions** over A are formulas P(x,y) with at most x, y free (we write $y \Vdash P(x)$ instead of P(x,y)) for which

$$x \Vdash P(y) \vdash_{_{\widehat{\mathsf{ID}_1}}} x \varepsilon A$$

 $P(x,y) \leq Q(x,y)$ over A if there exists a numeral **r** for which

$$y \Vdash P(x) \vdash_{\overline{\mathbb{D}_1}} {\mathbf{r}}(x,y) \Vdash Q(x)$$

Propositions over C_r

Define over C_r a first-order hyperdoctrine

 $\mathbf{Prop}^r : \mathcal{C}_r^{op} \to \mathbf{Heyt}$

the posetal reflection of the doctrine of Kleene realizability for which **realized propositions** over A are formulas P(x,y) with at most x, y free (we write $y \Vdash P(x)$ instead of P(x,y)) for which

$$x \Vdash P(y) \vdash_{\widehat{\mathsf{ID}_1}} x \varepsilon A$$

 $P(x,y) \leq Q(x,y)$ over A if there exists a numeral **r** for which

$$y \Vdash P(x) \vdash_{\overline{\mathbb{D}_1}} {\mathbf{r}}(x,y) \Vdash Q(x)$$

different from the tripos defining the effective topos, where x is **not** a natural number in general

$$y \Vdash P(x) \vdash_{\overline{D_1}} \{\mathbf{r}\}(y) \Vdash Q(x)$$

Sets and small propositions

Sets and small propositions

Last thing to do:

there are notions of sets and small propositions to capture.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Last thing to do:

there are notions of sets and small propositions to capture.

define predicates set(x), $x \in y$ and $x \notin y$ in $\widehat{ID_1}$ to encode Martin-Löf sets (closed under empty set, singleton, +, Σ , Π , List, Id) and their realizability interpretation;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Last thing to do:

there are notions of sets and small propositions to capture.

define predicates set(x), $x \in y$ and $x \notin y$ in $\widehat{\text{ID}_1}$ to encode Martin-Löf sets (closed under empty set, singleton, +, Σ , Π , List, Id) and their realizability interpretation;

define a universe of sets U_s in the base category;

Last thing to do:

there are notions of sets and small propositions to capture.

define predicates set(x), $x \in y$ and $x \notin y$ in $\widehat{\text{ID}_1}$ to encode Martin-Löf sets (closed under empty set, singleton, +, Σ , Π , List, Id) and their realizability interpretation;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

define a universe of sets U_s in the base category;

define an indexed category Set^r

Last thing to do:

there are notions of sets and small propositions to capture.

define predicates set(x), $x \in y$ and $x \notin y$ in $\widehat{ID_1}$ to encode Martin-Löf sets (closed under empty set, singleton, +, Σ , Π , List, Id) and their realizability interpretation;

define a universe of sets U_s in the base category;

define an indexed category \mathbf{Set}^r

and small propositions $\overline{\mathbf{Prop}_s}^r$ as a doctrine over the base category.

The predicative effective topos

<□ > < @ > < E > < E > E のQ @

Elementary quotient completion

If $\mathbf{p}: \mathbb{C}^{op} \to \mathbf{Heyt}$ is a first-order hyperdoctrine over a cartesian category \mathbb{C} ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $\mathbf{p} : \mathbb{C}^{op} \to \mathbf{Heyt}$ is a first-order hyperdoctrine over a cartesian category \mathbb{C} , one can perform the **elementary quotient completion** (Maietti, Rosolini)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\mathbf{p} : \mathbb{C}^{op} \to \mathbf{Heyt}$ is a first-order hyperdoctrine over a cartesian category \mathbb{C} , one can perform the **elementary quotient completion** (Maietti, Rosolini) $\overline{\mathbf{p}} : \mathcal{Q}_{\mathbf{p}} \to \mathbf{Heyt}$ having all quotients of $\overline{\mathbf{p}}$ -equivalence relations:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\mathbf{p} : \mathbb{C}^{op} \to \mathbf{Heyt}$ is a first-order hyperdoctrine over a cartesian category \mathbb{C} , one can perform the **elementary quotient completion** (Maietti, Rosolini) $\overline{\mathbf{p}} : \mathcal{Q}_{\mathbf{p}} \to \mathbf{Heyt}$ having all quotients of $\overline{\mathbf{p}}$ -equivalence relations:

objects of Q_p : $A = (|A|, \sim_A)$, |A| is an object of \mathbb{C} and $\sim_A \in \mathbf{p}(|A| \times |A|)$ is an **p**-equivalence relation on |A|

If $\mathbf{p} : \mathbb{C}^{op} \to \mathbf{Heyt}$ is a first-order hyperdoctrine over a cartesian category \mathbb{C} , one can perform the **elementary quotient completion** (Maietti, Rosolini) $\overline{\mathbf{p}} : \mathcal{Q}_{\mathbf{p}} \to \mathbf{Heyt}$ having all quotients of $\overline{\mathbf{p}}$ -equivalence relations:

```
objects of Q_p: A = (|A|, \sim_A),
|A| is an object of \mathbb{C} and
\sim_A \in \mathbf{p}(|A| \times |A|) is an p-equivalence relation on |A|
```

arrow in $\mathcal{Q}_{\mathbf{p}}$ from A to Bequivalence class of arrows $f : |A| \to |B|$ of \mathbb{C} respecting equivalence relations: $x \sim_A y \vdash_{\mathbf{p}} f(x) \sim_B f(y)$, w.r.t. to equivalence relation: $f \equiv g$ iff $x \in A \vdash_{\mathbf{p}} f(x) \sim_B g(x)$.

If $\mathbf{p} : \mathbb{C}^{op} \to \mathbf{Heyt}$ is a first-order hyperdoctrine over a cartesian category \mathbb{C} , one can perform the **elementary quotient completion** (Maietti, Rosolini) $\overline{\mathbf{p}} : \mathcal{Q}_{\mathbf{p}} \to \mathbf{Heyt}$ having all quotients of $\overline{\mathbf{p}}$ -equivalence relations:

arrow in $\mathcal{Q}_{\mathbf{p}}$ from A to Bequivalence class of arrows $f : |A| \to |B|$ of \mathbb{C} respecting equivalence relations: $x \sim_A y \vdash_{\mathbf{p}} f(x) \sim_B f(y)$, w.r.t. to equivalence relation: $f \equiv g$ iff $x \in A \vdash_{\mathbf{p}} f(x) \sim_B g(x)$.

$$\alpha \in \overline{\mathbf{p}}(A)$$
 iff $\alpha \in \mathbf{p}(|A|)$ and $\alpha(x) \wedge x \sim_A y \vdash_{\mathbf{p}} \alpha(y)$
order is inherited from $\mathbf{p}(|A|)$.

The predicative effective topos

 $p\mathcal{E}ff := \mathcal{Q}_{\mathbf{Prop}'}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The predicative effective topos

 $p\mathcal{E}ff := \mathcal{Q}_{\mathbf{Prop}'}$ $p\mathcal{E}ff_{\mathbf{Prop}} := \overline{\mathbf{Prop}'}$

$$p\mathcal{E}ff := \mathcal{Q}_{\mathbf{Prop}^{r}}$$

$$p\mathcal{E}ff_{\mathbf{Prop}} := \overline{\mathbf{Prop}^{r}}$$

$$\alpha \in p\mathcal{E}ff_{\mathbf{Prop}_{s}}(A, \sim_{A}) \text{ iff } \alpha \in p\mathcal{E}ff_{\mathbf{Prop}}(A, \sim_{A}) \cap \mathbf{Prop}_{s}^{r}(|A|)$$

$$p\mathcal{E}ff := \mathcal{Q}_{\mathbf{Prop}^{r}}$$

$$p\mathcal{E}ff_{\mathbf{Prop}} := \overline{\mathbf{Prop}^{r}}$$

$$\alpha \in p\mathcal{E}ff_{\mathbf{Prop}_{s}}(A, \sim_{A}) \text{ iff } \alpha \in p\mathcal{E}ff_{\mathbf{Prop}}(A, \sim_{A}) \cap \mathbf{Prop}_{s}^{r}(|A|)$$

one can also define fibrations of collections (codomain fibration) and of sets over $p \mathcal{E} f f$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$p\mathcal{E}ff := \mathcal{Q}_{\mathbf{Prop}^{r}}$$

$$p\mathcal{E}ff_{\mathbf{Prop}} := \overline{\mathbf{Prop}^{r}}$$

$$\alpha \in p\mathcal{E}ff_{\mathbf{Prop}_{s}}(A, \sim_{A}) \text{ iff } \alpha \in p\mathcal{E}ff_{\mathbf{Prop}}(A, \sim_{A}) \cap \mathbf{Prop}_{s}^{r}(|A|)$$

one can also define fibrations of collections (codomain fibration) and of sets over $p \mathcal{E} f f$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties of $p\mathcal{E}ff$

pEff is a locally cartesian closed list-arithmetic pretopos

Properties of $p\mathcal{E}ff$

 $p\mathcal{E}ff$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p\mathcal{E}ff_{\mathsf{Prop}_s}$, i.e.

 $p\mathcal{E}ff_{\mathbf{Prop}_{s}}(-)\simeq p\mathcal{E}ff(-,\Omega)$

Properties of $p\mathcal{E}ff$

$p\mathcal{E}ff$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p\mathcal{E}ff_{\mathsf{Prop}_s}$, i.e.

 $p\mathcal{E}ff_{\mathbf{Prop}_{s}}(-)\simeq p\mathcal{E}ff(-,\Omega)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

But

 $\mathbf{Prop}^r \equiv \mathbf{wSub}_{\mathcal{C}_r}$

Properties of $p\mathcal{E}ff$

$p\mathcal{E}ff$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p\mathcal{E}ff_{\mathsf{Prop}_s}$, i.e.

$$p\mathcal{E}ff_{\mathbf{Prop}_{s}}(-)\simeq p\mathcal{E}ff(-,\Omega)$$

But

 $\mathbf{Prop}^r \equiv \mathbf{wSub}_{\mathcal{C}_r}$

Properties of $p\mathcal{E}ff$

$p\mathcal{E}ff$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p\mathcal{E}ff_{\mathsf{Prop}_s}$, i.e.

$$p\mathcal{E}ff_{\mathbf{Prop}_{s}}(-) \simeq p\mathcal{E}ff(-,\Omega)$$

But

 $\mathbf{Prop}^r \equiv \mathbf{wSub}_{\mathcal{C}_r}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is a predicative variant of a topos.

Properties of $p\mathcal{E}ff$

$p\mathcal{E}ff$ is a locally cartesian closed list-arithmetic pretopos it has a classifier Ω for $p\mathcal{E}ff_{\mathsf{Prop}_s}$, i.e.

$$p\mathcal{E}ff_{\mathbf{Prop}_{s}}(-) \simeq p\mathcal{E}ff(-,\Omega)$$

But

 $\mathbf{Prop}^r \equiv \mathbf{wSub}_{\mathcal{C}_r}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is a predicative variant of a topos.

Relation with the Effective Topos

Relation with the Effective Topos

<□ > < @ > < E > < E > E のQ @

The effective topos

In **ZFC**

In ZFC

Assemblies (Asm):

objects: (A, P), A set, $P : A \to \mathcal{P}(\mathbb{N})$, $P(a) \neq \emptyset$ for every $a \in A$. arrows $f : (A, P) \to (B, Q)$, $f : A \to B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

In ZFC

Assemblies (Asm):

objects: (A, P), A set, $P : A \to \mathcal{P}(\mathbb{N})$, $P(a) \neq \emptyset$ for every $a \in A$. arrows $f : (A, P) \to (B, Q)$, $f : A \to B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

Partitioned Assemblies (pAsm): full subcategory of **Asm** objects: #P(a) = 1 for every $a \in A$

In ZFC

Assemblies (Asm):

objects: (A, P), A set, $P : A \to \mathcal{P}(\mathbb{N})$, $P(a) \neq \emptyset$ for every $a \in A$. arrows $f : (A, P) \to (B, Q)$, $f : A \to B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

Partitioned Assemblies (pAsm): full subcategory of **Asm** objects: #P(a) = 1 for every $a \in A$

Rec: full subcategory of **Asm** objects: $A \subseteq \mathbb{N}$ and $P(a) = \{a\}$ for every $a \in A$.

In ZFC

Assemblies (Asm):

objects: (A, P), A set, $P : A \to \mathcal{P}(\mathbb{N})$, $P(a) \neq \emptyset$ for every $a \in A$. arrows $f : (A, P) \to (B, Q)$, $f : A \to B$ and there is $r \in \mathbb{N}$ such that $\{r\}(n) \in Q(f(a))$ for every $a \in A$ and $n \in P(a)$.

Partitioned Assemblies (pAsm): full subcategory of **Asm** objects: #P(a) = 1 for every $a \in A$

Rec: full subcategory of Asm

objects: $A \subseteq \mathbb{N}$ and $P(a) = \{a\}$ for every $a \in A$.

Rec isomorphic to the category of subsets of natural numbers and (restrictions of) recursive functions between them.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relation with the Effective Topos

The effective topos $\mathcal{E}ff$ can be introduced in three different ways:

<□ > < @ > < E > < E > E のQ @

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC;
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC:
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;
- as ex/lex completion (Robinson, Rosolini)
 - of a category of partitioned assemblies **pAsm**.

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC;
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;
- as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.

 C_r is a rendering of **Rec** in $\widehat{ID_1}$ and **Prop**^r is equivalent to **wSub**:

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC;
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;
- as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.

 C_r is a rendering of **Rec** in $\widehat{ID_1}$ and **Prop**^r is equivalent to **wSub**: in this case elementary quotient completion is equivalent to ex/lex completion.

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC;
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;
- as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.

 C_r is a rendering of **Rec** in $\widehat{ID_1}$ and **Prop**^r is equivalent to **wSub**: in this case elementary quotient completion is equivalent to ex/lex completion.

Hence our construction is a version of 3 restricted to Rec

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC:
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;
- as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.

 C_r is a rendering of **Rec** in $\widehat{ID_1}$ and **Prop**^r is equivalent to **wSub**: in this case elementary quotient completion is equivalent to ex/lex completion.

Hence our construction is a version of 3 restricted to **Rec** (weak subobjects in **Rec** coincide with weak subobjects in **pAsm**)
The effective topos $\mathcal{E}ff$ can be introduced in three different ways:

- via tripos-to-topos construction (Hyland, Johnstone, Pitts) from p_{Eff} : Set^{op} → preHeyt; with Set from ZFC;
- as ex/reg completion (Freyd, Carboni, Scedrov) of a category of assemblies Asm;
- as ex/lex completion (Robinson, Rosolini) of a category of partitioned assemblies pAsm.

 C_r is a rendering of **Rec** in $\widehat{ID_1}$ and **Prop**^r is equivalent to **wSub**: in this case elementary quotient completion is equivalent to ex/lex completion.

Hence our construction is a version of 3 restricted to **Rec** (weak subobjects in **Rec** coincide with weak subobjects in **pAsm**) expressed in $\widehat{ID_1}$.

References

- M. Hyland, P. Johnstone, A. Pitts. Tripos theory, 1980.
- M. Hyland. The Effective Topos, 1981.
- M. E. Maietti, G. Sambin. Towards a minimalist foundation for constructive mathematics, 2005.
- M. E. Maietti. A minimalist two-level foundation for constructive mathematics, 2009.
- M. E. Maietti, G. Rosolini. Quotient completion for the foundation of constructive mathematics, 2013.
- H.Ishihara, M.E.Maietti, S. Maschio, T.Streicher. Consistency of the intensional level of the Minimalist Foundation with Church's Thesis and Axiom of Choice, to appear in Archive for Mathematical Logic.
- M. E. Maietti, S. Maschio. A strictly predicative variant of Hyland's Effective Topos, submitted.