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From the Minimalist Foundation to a predicative tripos

The Minimalist Foundation (Maietti, Sambin 2005, Maietti 2009) consists
of two levels:

an intensional level (to extract computational contents of math)

an extensional level (actual mathematics)

connected via a setoid interpretation

both contain four kinds of types:

sets, collections, small propositions, propositions (in context):

mTT setoid emTT

Set �
� // Col interpretation Set �

� // Col

Props
� � //?�

OO

Prop
?�

OO

⇐ Props
� � //?�
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OO

idea: mimic this structure to define a predicative version of the effective
topos from a predicative effective tripos.
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From the Minimalist Foundation to a predicative tripos

A model for the intensional level

Concrete starting point: the model for mTT +CT +AC

in (Ishihara, Maietti, Maschio, Streicher).

this interpretation is performed in Feferman’s ÎD1

via a variant of Martin-Löf type theory (props-as-types)

not a categorical model: problems with interpretation of λ-abstraction and
substitution (weak exponentials)

however one can extract some categorical structure giving rise to a
predicative version of a tripos



From the Minimalist Foundation to a predicative tripos

A model for the intensional level

Concrete starting point: the model for mTT +CT +AC

in (Ishihara, Maietti, Maschio, Streicher).

this interpretation is performed in Feferman’s ÎD1
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via a variant of Martin-Löf type theory (props-as-types)

not a categorical model: problems with interpretation of λ-abstraction and
substitution (weak exponentials)

however one can extract some categorical structure giving rise to a
predicative version of a tripos



The predicative effective tripos

The predicative effective tripos



The predicative effective tripos

The base category

Cr :

obj A ∶= {x ∣ϕA(x)}, ϕA(x) formula of ÎD1

as usual x εA is ϕA(x);

arr [n]≈A,B ∶ A→ B
n numeral;
x εA ⊢

ÎD1
{n}(x) εB;

n ≈A,B m is x εA ⊢
ÎD1

{n}(x) = {m}(x).

Cr is a finitely complete weakly locally cartesian closed category with
parameterized list objects.
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ÎD1
{n}(x) εB;

n ≈A,B m is x εA ⊢
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The predicative effective tripos

Collections over Cr

Define over Cr an indexed category representing dependent collections

Colr ∶ Cop
r → Cat

Colr(A):

objects: definable classes with a parameter over the context A

arrows: recursive functions (possibly depending on the context) represented
by numerals

Colr([n]) are substitution functors.
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The predicative effective tripos

Propositions over Cr

Define over Cr a first-order hyperdoctrine

Propr
∶ C

op
r → Heyt

the posetal reflection of the doctrine of Kleene realizability for which

realized propositions over A are formulas P(x , y)

with at most x , y free (we write y ⊩ P(x) instead of P(x , y)) for which

x ⊩ P(y) ⊢
ÎD1

x εA

P(x , y) ≤ Q(x , y) over A if there exists a numeral r for which

y ⊩ P(x) ⊢
ÎD1

{r}(x , y) ⊩ Q(x)

different from the tripos defining the effective topos, where x is not a
natural number in general

y ⊩ P(x) ⊢
ÎD1

{r}(y) ⊩ Q(x)
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Sets and small propositions

Last thing to do:

there are notions of sets and small propositions to capture.

define predicates set(x), xεy and x /ε y in ÎD1 to encode Martin-Löf sets
(closed under empty set, singleton, +, Σ, Π, List, Id) and their realizability
interpretation;

define a universe of sets Us in the base category;

define an indexed category Setr

and small propositions Props

r
as a doctrine over the base category.
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The predicative effective topos

Elementary quotient completion

If p ∶ Cop
→ Heyt is a first-order hyperdoctrine over a cartesian category C,

one can perform the elementary quotient completion (Maietti, Rosolini)

p ∶ Qp → Heyt having all quotients of p-equivalence relations:

objects of Qp: A = (∣A∣,∼A),

∣A∣ is an object of C and

∼A∈ p(∣A∣ × ∣A∣) is an p-equivalence relation on ∣A∣

arrow in Qp from A to B

equivalence class of arrows f ∶ ∣A∣→ ∣B ∣ of C
respecting equivalence relations: x ∼A y ⊢p f (x) ∼B f (y),

w.r.t. to equivalence relation:f ≡ g iff xεA ⊢p f (x) ∼B g(x).

α ∈ p(A) iff α ∈ p(∣A∣) and α(x) ∧ x ∼A y ⊢p α(y)

order is inherited from p(∣A∣).
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The predicative effective topos

pEff ∶= QPropr

pEffProp ∶= Propr

α ∈ pEffProps
(A,∼A) iff α ∈ pEffProp(A,∼A) ∩Propr

s(∣A∣)

one can also define fibrations of collections (codomain fibration)

and of sets over pEff .
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The effective topos

In ZFC

Assemblies (Asm):

objects: (A,P), A set, P ∶ A→ P(N), P(a) ≠ ∅ for every a ∈ A.

arrows f ∶ (A,P)→ (B,Q), f ∶ A→ B and there is r ∈ N such that
{r}(n) ∈ Q(f (a)) for every a ∈ A and n ∈ P(a).

Partitioned Assemblies (pAsm): full subcategory of Asm

objects: #P(a) = 1 for every a ∈ A

Rec: full subcategory of Asm

objects: A ⊆ N and P(a) = {a} for every a ∈ A.

Rec isomorphic to the category of subsets of natural numbers and
(restrictions of) recursive functions between them.
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The effective topos Eff can be introduced in three different ways:

1 via tripos-to-topos construction (Hyland, Johnstone, Pitts)

from pEff ∶ Setop
→ preHeyt;

with Set from ZFC;

2 as ex/reg completion (Freyd, Carboni, Scedrov)

of a category of assemblies Asm;

3 as ex/lex completion (Robinson, Rosolini)

of a category of partitioned assemblies pAsm.

Cr is a rendering of Rec in ÎD1 and Propr is equivalent to wSub:

in this case elementary quotient completion is equivalent to ex/lex
completion.

Hence our construction is a version of 3 restricted to Rec

(weak subobjects in Rec coincide with weak subobjects in pAsm)

expressed in ÎD1.
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Relation with the Effective Topos

The effective topos Eff can be introduced in three different ways:

1 via tripos-to-topos construction (Hyland, Johnstone, Pitts)

from pEff ∶ Setop
→ preHeyt;

with Set from ZFC;

2 as ex/reg completion (Freyd, Carboni, Scedrov)

of a category of assemblies Asm;

3 as ex/lex completion (Robinson, Rosolini)

of a category of partitioned assemblies pAsm.
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