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Languages

Definition (L+,L⊥,L¬)
We shall use the following propositional languages:

L+ ::= p|A ∧ B|A ∨ B|A→ B|
L⊥ ::= p|A ∧ B|A ∨ B|A→ B|⊥
L¬ ::= p|A ∧ B|A ∨ B|A→ B|¬A

In L⊥, we take ¬A to be the abbreviation for A→ ⊥.
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Minimal/Intuitionistic Logic

Definition (MPC⊥, IPC⊥)
MPC⊥ is the smallest set of formulas of L⊥ containing the
axioms below. Plus: If A,A→ B ∈ MPC⊥ then B ∈ MPC⊥ (MP).

Axioms
A→ (B → A); (A→ (B → C))→ ((A→ B)→ (A→ C));
A→ (A ∨ B); B → (A ∨ B);
(A→ C)→ ((B → C)→ (A ∨ B → C));
A ∧ B → A; A ∧ B → B; A→ (B → (A ∧ B)).

IPC⊥ in addition contains the axiom EFQ: ⊥ → A .

⊥ in MPC⊥ behaves like a propositional variable.
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Negation and Contradiction

Definition (MPC¬)
MPC¬ is the smallest set of formulas of L¬ containing the
axioms below. Plus: If A,A→ B ∈ MPC¬ then B ∈ MPC¬.

Axioms
A→ (B → A); (A→ (B → C))→ ((A→ B)→ (A→ C));
A→ (A ∨ B); B → (A ∨ B);
(A→ C)→ ((B → C)→ (A ∨ B → C));
A ∧ B → A; A ∧ B → B; A→ (B → (A ∧ B));

M: [(A→ B) ∧ (A→ ¬B)]→ ¬A

Call the negation-less(L+) fragment of MPC¬ as PPC.
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Counter-intuitive Inferences Involving Negation

Definition (EFQ, NeF)

EFQ: (A ∧ ¬A)→ B [for MPC¬]
NeF: (A ∧ ¬A)→ ¬B

EFQ: holds in intuitionistic logic.
NeF: holds in minimal and intuitionistic logic.

They are seen as unsatisfactory from the criteria of:

(Relevance) Premises and the conclusions are related.
(Paraconsistency) Contradictions do not trivialise the logic.
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Paths to Subminimality

This motivates the study of logics with a weaker negation.
We can weaken MPC⊥ or MPC¬.
MPC⊥: no axiom for ⊥ ⇒ difficult to weaken
MPC¬: has the axiom M⇒ amendable with weaker

negation axioms
Such axioms are called subminimal axioms, and the logics
with them (defined over PPC) subminimal logics.
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Known Subminimal Axioms

Definition (Co, An, NeF, N)
Colacito, de Jongh and Vargas (2017) studied the following
subminimal axioms.
Co: (A→ B)→ (¬B → ¬A); An: (A→ ¬A)→ ¬A;
NeF: (A ∧ ¬A)→ ¬B; N: (A↔ B)→ (¬A↔ ¬B);

Proposition (Colacito (2016), Colacito et al.(2017))
(i) Co⇒ NeF, Co⇒ N
(ii) An+N⇔ M
(iii) Co⇒ ¬¬¬A→ ¬A

Call PPC+N (Co) as NPC (CoPC); NPC+NeF as NeFPC.
NPC is taken as the basic subminimal logic.
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Graphical Representation

NPC N: (A↔ B)→ (¬A↔ ¬B)

NeFPC N + NeF: (A ∧ ¬A)→ ¬B

CoPC Co: (A→ B)→ (¬B → ¬A)

MPC¬ N + An: (A→ ¬A)→ ¬A

Logic Negation Axiom(s)

Question
Is there a logic between MPC¬ and CoPC?
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An−: A Weaker Version of An

Definition (An−)

An−: (A→ ¬A)→ (¬B → ¬A)

We define An−PC as NPC + An−.

Proposition (separating An−PC from CoPC [N.])

(i) An−PC ` Co; CoPC 0 An−.
(ii) An−PC ) CoPC.

Hence CoPC is not maximal.

Proposition (some properties of An−PC [N.])

An−PC 0 A→ ¬¬A; An−PC ` ¬A→ ¬¬¬A.
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Sequent Calculus for An−PC

Definition (Sequent Calculus GAn− for An−PC)
Axioms: Ax: p ⇒ p (R>: Γ⇒ >)

Rules for positive connectives:
Γ,A,B ⇒ C

L∧:
Γ,A ∧ B ⇒ C

Γ⇒ A Γ⇒ BR∧:
Γ⇒ A ∧ B

Γ,A⇒ C Γ,B ⇒ C
L∨:

Γ,A ∨ B ⇒ C
Γ⇒ AiR∨: (i ∈ {1,2})

Γ⇒ A1 ∨ A2
Γ,A→ B ⇒ A Γ,B ⇒ C

L→:
Γ,A→ B ⇒ C

Γ,A⇒ B
R→:

Γ⇒ A→ B

Rules for negation:
Γ,¬A,A⇒ B Γ,¬A,B ⇒ A

N:
Γ,¬A⇒ ¬B

Γ,¬B,A⇒ ¬A
An− : Γ,¬B ⇒ ¬A
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Cut and Equivalence with Hilbert-system

We will in addition consider the following rule.

Definition (Cut)

Γ⇒ A Γ′,A⇒ B
Cut:

Γ, Γ′ ⇒ B

It is straightforward to establish the following equivalence:

Proposition (equivalence with An−PC [N.])
Γ `An− A if and only if `GAn−+Cut Γ⇒ A
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A Characterisation of An−PC

Definition (classes F+/F−)

F+ ::= p|P1 ∧ P2|P ∨ A|A ∨ P|A→ P|N → A
F− ::= ¬A|N ∧ A|A ∧ N|N1 ∨ N2|P → N
(P ∈ F+,N ∈ F−,A ∈ F+ ∪ F−)

Proposition (separating An−PC from MPC¬ [N.])

(i) If `GAn−+Cut Γ⇒ A and A ∈ F−, then Γ has a formula in F−.
(ii) 0GAn−+Cut ⇒ ¬A for any A; hence MPC¬ ) An−PC.

To see the last part, recall e.g. `M ⇒ ¬¬(p → p).
Negation in An−PC is relativistic, in the sense of (ii).
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Graphical Representation

NPC N: (A↔ B)→ (¬A↔ ¬B)

NeFPC N + NeF: (A ∧ ¬A)→ ¬B

CoPC Co: (A→ B)→ (¬B → ¬A)

An−PC N + An−: (A→ ¬A)→ (¬B → ¬A)

MPC¬ N + An: (A→ ¬A)→ ¬A

Logic Negation Axiom(s)

-All subminimal extensions of An−PC have relativistic negation.
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Further Proof-theoretic Properties of An−PC

Cut turns out to be admissible in GAn−:

Proposition (N.)
(i) If `GAn−+Cut Γ⇒ A then `GAn− Γ⇒ A
(ii) An−PC is decidable.

As further consequences of cut-admissibility,

We can show the disjunction property of An−PC;
The interpolation theorem holds for An−PC, extending the
result of Colacito (2016) on NPC.
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MPC¬ and Kripke Semantics

Definition (Kripke semantics for MPC¬)

A minimal frame is a triple (W ,≤,F ).
(W ,≤) is a poset.
F ⊆W is an upward closed set;
i.e. w ∈ F and w ′ ≥ w implies w ′ ∈ F .

We have the following valuation of negation.
-M,w 
 ¬A⇔ ∀w ′ ≥ w [M,w ′ 
 A⇒ w ′ ∈ F ]

F denotes the set of worlds where all negations hold.
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An−PC and Kripke Semantics

Definition (Kripke semantics for An−PC)

An An−-frame is a quadruple (W ,≤,F ,G).
(W ,≤) is a poset.
F ,G ⊆W are upward closed subsets s.t. F ⊆ G;

We have the following valuation of negation.
-M,w 
 ¬A⇔ ∀w ′ ≥ w [M,w ′ 
 A⇒ w ′ ∈ F ] ∧ w ∈ G

G denotes the set of worlds where some negations hold.
Thus G is a natural counterpart of F .
G\F is the area where negations hold untrivially.
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Completeness of An−PC

The following properties hold with repect to the semantics.

Proposition (completeness of An−PC [N.])
Γ `An− A⇔ Γ �An− A

Proposition (finite model property for An−PC [N.])

An−PC is weakly complete with respect to the class of finite
An−-frames.
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Axiom LP

Q. Is there a logic between MPC¬ and An−PC?

Definition (LP)

LP: (A↔ ¬A)→ ¬A

LP can be seen as expressing the liar’s paradox.

Proposition (class of LP-frames [N.])

Let F be an An−-frame. Then:
F � LP⇔ ∀w ∈W [w ∈ G ∨ ∃w ′ ≥ w(w ′ ∈ G\F )]

The frame property says you will eventually arrive in G.
If we take G = ∅, then LP is not valid in the frame.
Thus by soundness, LP is not a theorem of An−PC.
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LPPC

Definition (LPPC)

We define LPPC := An−PC + LP

By the previous proposition, LPPC ) An−PC.

Proposition (N.)
LPPC is sound and complete with the class of LP-frames.

Any LP-frame with G ( W can refute An; so
MPC¬ ) LPPC.
LPPC satisfies the disjunction property and the finite
model property.
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Graphical Representation

NPC N: (A↔ B)→ (¬A↔ ¬B)

NeFPC N + NeF: (A ∧ ¬A)→ ¬B

CoPC Co: (A→ B)→ (¬B → ¬A)

An−PC N + An−: (A→ ¬A)→ (¬B → ¬A)

LPPC N + An− + LP: (A↔ ¬A)→ ¬A

MPC¬ N + An: (A→ ¬A)→ ¬A

Logic Negation Axiom(s)
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Countably Many Logics with Relativistic Negation

Formulas below set the maximal length of intuitionistic frames.

Proposition (a result from intermediate logics)

Let bd1 := p1 ∨ ¬p1, bdn+1 := pn+1 ∨ (pn+1 → bdn).
Then F �I bdi ⇔W does not have chains of > i worlds.

We can apply this to the length of chains in W\G in LP-frame.

Proposition (N.)

Let Gd1 := (p1 → ¬p1)→ ¬p1, Gdn+1 := pn+1 ∨ (pn+1 → Gdn).
Then F �LP Gdi ⇔W\G does not have chains of ≥ i worlds.

With this it is easy to verify (via soundness),
MPC¬ = LPPC + Gd1 ) LPPC + Gd2 ) . . . ) LPPC.
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Future Directions

Is there a maximal subminimal logic with relativistic
negation?
How many logics are there between MPC¬ and An−PC?
(Bezhanishvili, Colacito and de Jongh (2017) showed
uncountably many exist between MPC¬ and NPC.)
How does our semantics correspond with the Kripke
semantics of Colacito et al.(2017)?
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