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Prelminaries

.. Outline

In 2007, Liu–Tanaka characterized the distribution which
achieves the distributional complexity for binary AND-OR
tree, and showed the uniqueness of such distribution.

The characterization is extended to multi-branching trees,
but the uniqueness was not proved.

We introduce the weighted tree, and give a proof of the
uniqueness.
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An AND-OR tree is a tree whose root is labeled by AND (∧)
and the internal nodes are level-by-level labeled by OR (∨)
or AND alternatively except for leaves.
Such a tree is also called Game tree.
For AND-OR tree T , function ω from the set of all leaves of
T to {0, 1} is called an assignment.

An assignment is denoted by a 0-1 sequence.
(e.g ω = 0010)
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.. Algorithms

An algorithm A tells how to proceed to evaluate a tree.
Algorithms have the following properties:

deterministic :
The choice of leaves in each step is unique.

depth-first :
If an algorithm evaluates the value of some subtree, it
never evaluate another subtree until it finishes to
evaluates the current one.

An algorithm is directional if there is some linear ordering on
the leaves such that the computation follows this ordering.
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.. Example of algorithm

Figure: algorithm Figure: AND-OR tree

Shohei Okisaka (joint work with W. Peng, W. Li, and K. Tanaka) The Eigen-Distribution of Weighted AND-OR Trees



Introduction
Main theorem

Prelminaries

.. Notation

Let A be a directional algorithm whose priority of searching
leaves is as follows:

We say A =1243.

Given an assignment ω and an algorithm A , C(A , ω)
denotes the number of leaves checked by A under ω.
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.. How to evaluate the cost

For the directional algorithm A =1243 and ω = 1010

In this case, C(A , ω) = 3
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Let d be a (probability) distribution on the set of assignments,
the expected cost of A under the distribution d is defined by

C(A , d) :=
∑
ω

d(ω)C(A , ω)

Given a class of algorithms A,
distributional complexity w.r.t A is defined by:

max
d

min
A∈A

C(A , d)
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A distribution d satisfying

min
A∈A

C(A , d) = max
d

min
A∈A

C(A , d)

is called eigen-distribution (w.r.t A).

Liu–Tanaka gave a characterization of the eigen-distribution
for uniform binary tree.
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The “i-set” is the set of assignments which are difficult to
evaluate.
.
Definition (i-set for n-branching trees)
..

.

. ..

.

.

Given an n-branching tree T , i ∈ {0, 1}, the i-set consists of
assignments such that
• the root has value i,
• if an AND-node has value 0 ( or OR-node has value 1), just
one of its children has value 0 (1), and other n-1 children
have 1 (0).
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.. Example of i-set

For AND-OR tree T 2
2 ,

1-set=
{1010, 1001, 0110, 0101}
0-set=
{1000, 0100, 0010, 0001}

For example, assignment 1110 <1-set.

.
Definition..

.

. ..

.

.

E1-distribution (w.r.t A) is a distribution on 1-set whose
expected cost is independent of the choice of algorithms in
A.
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.
Theorem (Liu–Tanaka (2007) )
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Let T be a uniform binary AND-OR tree.
Then, the E1-distribution is the unique eigen-distribution,
espacially, which is the uniform distribution on 1-set.

.
Theorem (Suzuki–Nakamura (2012) )
..

.

. ..

.

.

T : uniform binary AND-OR tree,
A: (closed) set of algorithms
Then, eigen-distribution is equivalent to E1-distribution w.r.t
A.
Furthermore, if A is the set of all directional algorithms, the
uniqueness fails.

Shohei Okisaka (joint work with W. Peng, W. Li, and K. Tanaka) The Eigen-Distribution of Weighted AND-OR Trees



Introduction
Main theorem

Prelminaries

.
Theorem (Peng et al. (2016))
..

.

. ..

.
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T : n-branching AND-OR tree
A: (closed) set of algorithms
Then, eigen-distribution is equivalent to E1-distribution w.r.t
A.

.
Theorem (Peng et al. (2016))
..

.

. ..

.

.

Let T be a n-branching AND-OR tree of height 2. Then
E1-distribution is the uniform distribution on 1-set.
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It remains that
.
Theorem..

.

. ..

.

.

For any n-branching AND-OR tree,
E1-distribution is the uniform distribution on 1-set.

To show this theorem,
we generalize the definition of “cost”.
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For any algorithm A , and assignment ω, we define
#0(A , ω) := the number of leaves checked by A and
assigned 0 under ω.

#1(A , ω) := the number of leaves checked by A and
assigned 1 under ω.
.
Definition..

.

. ..

.

.

Let a, b ∈ R>0. The generalized cost C(A , ω; a, b) of A under
ω is defined as follows:

C(A , ω; a, b) := a ·#0(A , ω) + b ·#1(A , ω)

C(A , d; a, b), E1(a, b)-distribution,... are defined by the
same way.
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For the directional algorithm A =1243 and ω = 1010

In this case, C(A , ω; a, b) = a + 2b
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Example (AND-OR tree of height 1)

1-set ={ω0} , 0-set ={ ωi | i = 1, 2, · · · , n}

where ω0(vj) = 1, ωi(vj) =

1 (i , j)

0 (i = j)
(j = 1, 2, · · · , n)

Then,
C(A , duni(1-set); a, b) = nb,
C(A , duni(0-set); a, b) = a + n−1

2 b
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.
Theorem..
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. ..
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Let a, b ∈ R>0. For any n-branching AND-OR tree,
E1(a, b)-distribution is the uniform distribution on 1-set.

The same statement hold for E0(a, b)-distribution.

We prove this by induction on the height h.
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Induction step
We consider the E1(a, b)-distribution d and assume h is
even. The proof consists of two parts.
.
Lemma (1)
..

.

. ..

.

.

The probability of an assignment depends only on the value
of nodes in height h.

The proof is essentially the same as the case height 1.
We use the condition “nondirectional” here.
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We define the distribution d′ for AND-OR tree of height h.

d′(ω′) :=
∑
ω∈Ωω′

d(ω)

where Ωω′ := {ω | ω assigns ω′ to the nodes of height h.}

By the previous lemma, d′ can be represented by

d′(ω′) = C · d(ω)

We should note that the cardinality of Ωω′ is independent of
ω′,
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.
Lemma (2)
..

.

. ..
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d′ is an E1(a + n−1
2 b , nb)-distribution for AND-OR tree of

height h.

(sketch)
Given any algorithm A for height h, we can define an A ′ for
height h + 1 satisfying

C(A ′, d; a, b) = C(A , d′; a +
n − 1

2
b , nb)

Since d is E1(a, b)-distribution, the claim holds.
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d : E1(a, b)-distribution d′ : E1(a + n−1
2 , nb)-distribution

Recall (height 1)

C(A , duni(0-set); a, b) = a + n−1
2 b,

C(A , duni(1-set); a, b) = nb
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Let a, b ∈ R>0. For any n-branching AND-OR tree,
E1(a, b)-distribution is the uniform distribution on 1-set.

(proof)
By induction hypothesis, d′ is the uniform distribution on
1-set for height h.
Since d = 1

C d′, so d is also the uniform distribution on 1-set
for height h + 1.

□
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Since eigen-distribution is equivalent to E1-distribution, we
get the uniqueness of the eigen-distribution.
.
Corollary
..

.

. ..

.

.

Let T be an n-branching AND-OR tree.
Then E1-distribution is the uniform distribution on 1-set.
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Generally, the following does NOT hold for AND-OR tree:

E1(a, b)-distribution⇔ eigen-distribution

For example, if height is 1

C(A , duni(1-set); a, b) ≤ C(A , duni(0-set); a, b)

⇔ nb ≤ a + n−1
2 b ⇔ n+1

2 b ≤ a

Moreover, if the equality holds, then there are uncountably
many eigen-distributions.
So, the uniqueness of the eigen-distribution for weighted tree
fails.
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