Normal modal logics and provability predicates

Taishi Kurahashi (National Institute of Technology, Kisarazu College)

Second Workshop on Mathematical Logic and its Applications Kanazawa March 7, 2018

- Provability predicates
- **2** Arithmetical interpretations and provability logics
- **0** Our results

- Provability predicates
- **2** Arithmetical interpretations and provability logics
- **0** Our results

Provability predicates • 000	Arithmetical interpretations and provability logics 000000	Our results 0000000
Provability predicates		

Provability predicates

- \mathcal{L}_A : the language of first-order arithmetic
- \overline{n} : the numeral for $n \in \omega$

In the usual proof of Gödel's incompleteness theorems, a provability predicate plays an important role.

Provability predicates

A formula Pr(x) is a provability predicate of PA $\stackrel{\text{def.}}{\iff}$ for any $n \in \omega$, $PA \vdash Pr(\overline{n}) \iff n$ is the Gödel number of some theorem of PA.

Provability predicates	Arithmetical interpretations and provability logics	Our results
0000		
Provability predicates		

Standard construction of provability predicates

Gödel-Feferman's standard construction of provability predicates of PA is as follows.

Numerations

A formula $\tau(v)$ is a numeration of PA $\stackrel{\text{def.}}{\iff}$ for any $n \in \omega$, PA $\vdash \tau(\overline{n}) \iff n$ is the Gödel number of an axiom of PA.

- Let $\tau(v)$ be a numeration of PA.
- The relation "x is the Gödel number of an \mathcal{L}_A -fomula provable in the theory defined by $\tau(v)$ " is naturally expressed in the language \mathcal{L}_A .
- The resulting \mathcal{L}_A -formula is denoted by $\mathsf{Pr}_{\tau}(x)$.
- If $\tau(v)$ is Σ_{n+1} , then $\Pr_{\tau}(x)$ is also Σ_{n+1} .

Provability predicates	Arithmetical interpretations and provability logics	Our results
0000		
Provability predicates		

Properties of standard provability predicates

Theorem (Hilbert-Bernays-Löb-Feferman)

Let $\tau(v)$ be any numeration of PA.

- $\Pr_{\tau}(x)$ is a provability predicate of PA.
- $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_{\tau}(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_{\tau}(\ulcorner \psi \urcorner)).$
- $\mathsf{PA} \vdash \varphi \to \mathsf{Pr}_{\tau}(\ulcorner \varphi \urcorner)$ for any Σ_1 sentence φ .

Theorem

Let $\tau(v)$ be any Σ_1 numeration of PA.

- $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_{\tau}(\ulcorner \mathsf{Pr}_{\tau}(\ulcorner \varphi \urcorner) \urcorner).$
- (Gödel's second incompleteness theorem) PA ⊬ Con_τ, where Con_τ is the consistency statement ¬Pr_τ(^Γ0 = 1¯) of τ(v).
- (Löb's theorem) $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\ulcorner\mathsf{Pr}_{\tau}(\ulcorner\varphi\urcorner) \to \varphi\urcorner) \to \mathsf{Pr}_{\tau}(\ulcorner\varphi\urcorner).$

Provability predicates	Arithmetical interpretations and provability logics	Our results
0000		
Provability predicates		

Nonstandard provability predicates

There are many nonstandard provability predicates.

- Rosser's provability predicate $\Pr^{R}(x) \equiv \exists y(\Prf(x, y) \land \forall z \leq y \neg \Prf(\neg x, z)),$ where $\Prf(x, y)$ is a Δ_1 proof predicate.
- Mostowski's provability predicate $\Pr^{M}(x) \equiv \exists y (\Prf(x, y) \land \neg \Prf(\ulcorner\overline{0} = \overline{1}\urcorner, y))$
- Shavrukov's provability predicate $\Pr^{S}(x) \equiv \exists y (\Pr_{I\Sigma_{y}}(x) \land \operatorname{Con}_{I\Sigma_{y}})$

••••

Problem

What are the PA-provable principles of each provability predicate?

This problem is investigated in the framework of modal logic.

- Provability predicates
- **②** Arithmetical interpretations and provability logics
- **0** Our results

	Arithmetical interpretations and provability logics	Our results
	00000	
Arithmetical interpretations and pro-	vability logics	

Modal logics

Axioms and Rules of the modal logic K Axioms Tautologies and $\Box(p \to q) \to (\Box p \to \Box q)$. Rules Modus ponens $\frac{\varphi, \ \varphi \to \psi}{\psi}$, Necessitation $\frac{\varphi}{\Box \phi}$, and

Substitution.

Normal modal logics

A modal logic L is normal

 $\stackrel{\text{def.}}{\Longleftrightarrow} L \text{ includes K and is closed under three rules of K.}$

For each modal formula A, L + A denotes the smallest normal modal logic including L and A.

	Arithmetical interpretations and provability logics	0
	00000	
Arithmetical interpretations and prov	vability logics	

- $\mathsf{KT} = \mathsf{K} + \Box p \to p$
- $KD = K + \neg \Box \bot$
- $K4 = K + \Box p \rightarrow \Box \Box p$
- $K5 = K + \Diamond p \rightarrow \Box \Diamond p$
- $\mathsf{KB} = \mathsf{K} + p \to \Box \Diamond p$
- $GL = K + \Box(\Box p \rightarrow p) \rightarrow \Box p$
- • •

	Arithmetical interpretations and provability logics	Our results
	00000	
Arithmetical interpretations and prov	vability logics	

Arithmetical interpretations and provability logics

Let Pr(x) be a provability predicate of PA.

Arithmetical interpretations

A mapping f from modal formulas to \mathcal{L}_A -sentences is an arithmetical interpretation based on Pr(x)

 $\stackrel{\text{def.}}{\longleftrightarrow}$ f satisfies the following conditions:

•
$$f(\perp) \equiv \overline{0} = \overline{1};$$

•
$$f(A \rightarrow B) \equiv f(A) \rightarrow f(B);$$

•
$$f(\Box A) \equiv \Pr(\ulcorner f(A) \urcorner)$$
.

Provability logics

 $PL(Pr) := \{A : PA \vdash f(A) \text{ for all arithmetical interpretations } f \text{ based on } Pr(x)\}.$ The set PL(Pr) is said to be the provability logic of Pr(x).

	Arithmetical interpretations and provability logics	Our results
	000000	
Arithmetical interpretations and prov	vability logics	

Solovay's arithmetical completeness theorem

- Recall that for each Σ_1 numeration $\tau(v)$ of PA,
 - $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\ulcorner \varphi \to \psi \urcorner) \to (\mathsf{Pr}_{\tau}(\ulcorner \varphi \urcorner) \to \mathsf{Pr}_{\tau}(\ulcorner \psi \urcorner)),$
 - $\mathsf{PA} \vdash \mathsf{Pr}_{\tau}(\ulcorner\mathsf{Pr}_{\tau}(\ulcorner\varphi\urcorner) \to \varphi\urcorner) \to \mathsf{Pr}_{\tau}(\ulcorner\varphi\urcorner).$
- Corresponding modal formulas $\Box(p \to q) \to (\Box p \to \Box q)$ and $\Box(\Box p \to p) \to \Box p$ are axioms of GL.
- In fact, GL is exactly the provability logic of standard Σ_1 provability predicates.

Arithmetical completeness theorem (Solovay, 1976)

For any Σ_1 numeration $\tau(v)$ of PA, $PL(Pr_{\tau})$ coincides with GL.

	Arithmetical interpretations and provability logics	Our results
	000000	
Arithmetical interpretations and provability logics		

Feferman's predicate

On the other hand, there are provability predicates whose provability logics are completely different from GL.

Theorem (Feferman, 1960)

There exists a Π_1 numeration $\tau(v)$ of PA such that $PA \vdash Con_{\tau}$. Consequently, $KD \subseteq PL(Pr_{\tau})$ ($KD = K + \neg \Box \bot$).

Shavrukov found a nonstandard provability predicate whose provability logic is strictly stronger than KD.

Theorem (Shavrukov, 1994)

	Arithmetical interpretations and provability logics	Our results
	000000	
Arithmetical interpretations and provability logics		
		,

- There may be a lot of normal modal logic which is the provability logic of some provability predicate.
- We are interested in the following general problem.

General Problem

Which normal modal logic is the provability logic PL(Pr) of some provability predicate Pr(x) of PA?

- Kurahashi, T., Arithmetical completeness theorem for modal logic K, *Studia Logica*, to appear.
- Kurahashi, T., Arithmetical soundness and completeness for Σ_2 numerations, *Studia Logica*, to appear.
- Kurahashi, T., Rosser provability and normal modal logics, submitted.

- Provability predicates
- **2** Arithmetical interpretations and provability logics
- **Our results**

	Arithmetical interpretations and provability logics	Our results
		000000
Our results		

Several normal modal logics cannot be of the form PL(Pr).

Proposition (K., 201x)

Let L be a normal modal logic satisfying one of the following conditions. Then $L \neq PL(Pr)$ for all provability predicates Pr(x) of PA.

- $\mathsf{KT} \subseteq L$.
- **2** K4 \subseteq L and GL $\not\subseteq$ L.
- S K5 ⊆ L.
- $\textbf{I} \mathsf{KB} \subseteq L.$

Provability predicates 0000	Arithmetical interpretations and provability logics 000000	Our results 000000
Our results		
Theorem 1		

There exists a numeration of PA whose provability logic is minimum.

Theorem 1 (K., 201x)

There exists a Σ_2 numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = K$.

	Arithmetical interpretations and provability logics	Our results			
		000000			
Our results					
Theorem 2					

Theorem 2

- Sacchetti (2001) introduced the logics $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \ (n \ge 2)$.
- For $n \ge 2$, $\mathsf{K} + \Box(\Box^n p \to p) \to \Box p \subsetneq \mathsf{GL}$.
- He conjectured that these logics are provability logics of some nonstandard provability predicates.

We gave a proof of this conjecture.

Theorem 2 (K., 201x) For each $n \ge 2$, there exists a Σ_2 numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = K + \Box(\Box^n p \to p) \to \Box p$.

Therefore there are infinitely many provability logics.

	Arithmetical interpretations and provability logics	Our results
		0000000
Our results		

- How about KD?
- We paid attention to Rosser's provability predicates $\Pr^R(x)$ because PA always proves the consistency statements Con^R defined by using $\Pr^R(x)$.

Provability predicates 0000	Arithmetical interpretations and provability logics 000000	Our results 0000000		
Our results				
Rosser's provability predicates				

However, provability logics of Rosser's provability predicates are sometimes not normal.

Theorem (Guaspari and Solovay, 1979)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\operatorname{PA} \nvDash \Pr^R(\ulcorner \varphi \to \psi \urcorner) \to (\Pr^R(\ulcorner \varphi \urcorner) \to \Pr^R(\ulcorner \psi \urcorner))$ for some φ and ψ .

On the other hand, there exists a Rosser provability predicate whose provability logic is normal.

Theorem (Arai, 1990)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\mathsf{PA} \vdash \Pr^R(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow (\Pr^R(\ulcorner\varphi\urcorner) \rightarrow \Pr^R(\ulcorner\psi\urcorner))$ for any φ and ψ .

Then $KD \subseteq PL(Pr^R)$ for Arai's predicate $Pr^R(x)$.

	Arithmetical interpretations and provability logics	Our results
		0000000
Our results		

Theorems 3 and 4 $\,$

We proved that there exists $\mathsf{Pr}^R(x)$ whose provability logic coincides with KD.

Theorem 3 (K., 201x)

There exists a Rosser provability predicate $\mathsf{Pr}^R(x)$ such that $\mathsf{PL}(\mathsf{Pr}^R)=\mathsf{KD}.$

Moreover, there exists a Rosser provability predicate whose provability logic is strictly stronger than KD.

Theorem 4 (K., 201x)

There exists a Rosser provability predicate $\Pr^R(x)$ such that $\mathsf{KD} + \Box \neg p \rightarrow \Box \neg \Box p \subseteq \mathsf{PL}(\mathsf{Pr}^R)$.

	Arithmetical interpretations and provability logics	Our results
		000000
Our results		

Open Problems

Open Problem 1

Are there any others logics L such that $K \subsetneq L \subsetneq GL$ and L = PL(Pr) for some Pr(x)?

Open Problem 2

Is there a numeration $\tau(v)$ of PA such that $PL(Pr_{\tau}) = KD$?

Open Problem 3

Is there a Rosser provability predicate $\Pr^R(x)$ such that $\Pr(\Pr^R) = \mathsf{KD} + \Box \neg p \rightarrow \Box \neg \Box p$?

General Problem

Which (normal) modal logic is in the set $\{PL(Pr) : Pr(x) \text{ is a provability predicate of } PA\}$?