Ordinal Ranks on the Baire and non-Baire class functions

Takayuki Kihara

Nagoya University, Japan

Second Workshop on Mathematical Logic and its Applications, Kanazawa

Mar 6th, 2018

There are various notions of reducibility for decision problems; e.g. many-one (m), truth-table (tt), and Turing (T) reducibility

- Day-Downey-Westrick (DDW) recently introduced *m*-, *tt*-, and *T*-reducibility for real-valued functions.
- We give a full description of the structures of DDW's *m* and *T*-degrees of real-valued functions.

There are various notions of reducibility for decision problems; e.g. many-one (m), truth-table (tt), and Turing (T) reducibility

- Day-Downey-Westrick (DDW) recently introduced *m*-, *tt*-, and *T*-reducibility for real-valued functions.
- We give a full description of the structures of DDW's *m* and *T*-degrees of real-valued functions.

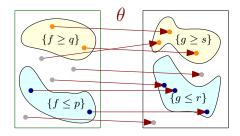
Caution: Without mentioning, we always assume **AD** (axiom of determinacy). But, of course:

- If we restrict our attention to Borel sets and Baire functions, every result presented in this talk is provable within ZFC.
- If we restrict our attention to projective sets and functions, every result presented in this talk is provable within ZF+DC+PD.
- We even have L(ℝ) ⊨ AD⁺, assuming that there are arbitrarily large Woodin cardinals.

Day-Downey-Westrick's *m*-reducibility

For $f, g : 2^{\omega} \to \mathbb{R}$, say f is *m*-reducible to g (written $f \leq_m g$) if given p < q, there are r < s and continuous $\theta : 2^{\omega} \to 2^{\omega}$ s.t.

- If $f(x) \le p$ then $g(\theta(x)) \le r$.
- If $f(x) \ge q$ then $g(\theta(x)) \ge s$.



Definition (Bourgain 1980)

Let $f : X \to \mathbb{R}$, p < q, and $S \subseteq X$. Define the (f, p, q)-derivative $D_{f,p,q}(S)$ of S as follows.

S \
$$\bigcup$$
 {x ∈ S : (∃U ∋ x) f[U] ⊆ (−∞, q) or f[U] ⊆ (p,∞)},

where **U** ranges over open sets. Consider the derivation procedure $P_{f,p,q}^{0} = X, P_{f,p,q}^{\xi+1} = D_{f,p,q}(P_{f,p,q}^{\xi}), P_{f,p,q}^{\lambda} = \bigcap_{\xi < \lambda} P_{f,p,q}^{\xi}$ for λ limit The Bourgain rank $\alpha(f)$ is defined as follows: $\alpha(f, p, q) = \min\{\alpha : P_{f,p,q}^{\alpha} = \emptyset\}; \quad \alpha(f) = \sup_{p < q} \alpha(f, p, q).$

- $\alpha(f) = 1 \iff f$ is continuous.

(Bourgain introduced this notion to analyze the Odell-Rosenthal theorem in Banach space theory)

Takayuki Kihara (Nagoya)

Ordinal Ranks on the Baire and non-Baire class functions

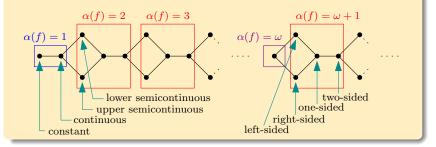
Definition (Day-Downey-Westrick)

Let $f : X \rightarrow \mathbb{R}$ be a Baire-one function.

- **f** is two-sided if $\exists p < q$ s.t. $\alpha(f, p, q) = \alpha(f)$ and $\forall v < \alpha(f) \exists x, y \text{ rank } > v$ s.t. $f(x) \le p < q \le f(y)$.
- If f is not two-sided, it is called one-sided.
- f is left-sided if $\forall p < q$ with $\alpha(f, p, q) = \alpha(f)$, $\exists v < \alpha(f) \forall x \text{ rank} > v, f(x) < p.$
- f is right-sided if $\forall p < q$ with $\alpha(f, p, q) = \alpha(f)$, $\exists v < \alpha(f) \forall x \text{ rank} > v, f(x) > q$.
- f is free one-sided if it is one-, but neither left- nor right-sided.
 - Rank 2 and left-sided ⇐⇒ lower semicontinuous
 - Rank 2 and right-sided upper semicontinuous

Theorem (Day-Downey-Westrick)

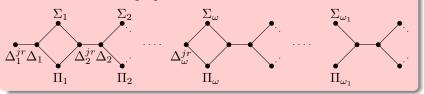
- For Baire-one functions, $\alpha(f) \leq \alpha(g)$ implies $f \leq_m g$.
- The α -rank **1** consists of two **m**-degrees.
- Each successor α -rank > 1 consists of four *m*-degrees.
- Each limit α -rank consists of a single *m*-degree.



This gives a full description of the *m*-degrees of the Baire-one functions.

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:



The DDW-*m*-degrees form a semi-well-order of height Θ . (Θ = the least ordinal $\alpha > 0$ s.t. there is no surjection from \mathbb{R} onto α .) For a limit ordinal $\xi < \Theta$ and finite $n < \omega$,

- the DDW-*m*-rank $\xi + 3n + c_{\xi}$ consists of two incomparable degrees
- each of the other ranks consists of a single degree.

Here, $c_{\xi} = 2$ if $\xi = 0$; $c_{\xi} = 1$ if $cf(\xi) = \omega$; and $c_{\xi} = 0$ if $cf(\xi) \ge \omega_1$.

Theorem (K.-Montalbán; 201x)

The Wadge degrees \approx the "natural" many-one degrees.

DDW defined **T**-reducibility for \mathbb{R} -valued functions as parallel continuous (strong) Weihrauch reducibility ($f \leq_T g$ iff $f \leq_{eW}^c \widehat{g}$):

 $f \leq_T g \iff (\exists H, K)(\forall x) K(x, (g(H(n, x))_{n \in \mathbb{N}}) = f(x).$

2nd Main Theorem (K.)

The DDW *T*-degrees \approx the "natural" Turing degrees.

(Steel '82; Becker '88) The "natural" Turing degrees form a well-order of type Θ . Hence, the DDW **T**-degrees (of nonconst. functions) form a well-order of type Θ . (The DDW **T**-rank of a Baire class function coincides with 2+ its Baire rank)

More Theorems... (with Westrick)

There are many other characterizations of DDW *T*-degrees, e.g., relative computability w.r.t. point-open topology on the space $\mathbb{R}^{(2^{\omega})}$.

The 1st Main Theorem

Takayuki Kihara (Nagoya) Ordinal Ranks on the Baire and non-Baire class functions

- Pointclass: $\Gamma \subseteq \omega^{\omega}$
- Dual: $\check{\Gamma} = \{\omega^{\omega} \setminus A : A \in \Gamma\}.$
- A pointclass Γ is selfdual iff $\Gamma = \check{\Gamma}$.
- For A, B ⊆ ω^ω, A is Wadge reducible to B (A ≤_w B) if
 (∃θ continuous)(∀X ∈ ω^ω) X ∈ A ⇔ θ(X) ∈ B.
- $\mathbf{A} \subseteq \omega^{\omega}$ is selfdual if $\mathbf{A} \equiv_{\mathbf{w}} \omega^{\omega} \setminus \mathbf{A}$.
- $A \subseteq \omega^{\omega}$ is selfdual iff $\Gamma_A = \{B \in \omega^{\omega} : B \leq_w A\}$ is selfdual.

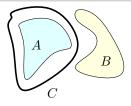
$$\Delta^i_{\alpha}$$
 is selfdual, but Σ^i_{α} and Π^i_{α} are nonselfdual.

Theorem (Wadge; Martin-Monk 1970s)

The Wadge degrees are semi-well-ordered.

In particular, nonselfdual pairs are well-ordered, say $(\Gamma_{\alpha}, \check{\Gamma}_{\alpha})_{\alpha < \Theta}$ where Θ is the height of the Wadge degrees. A pointclass **F** has the separation property if

 $(\forall A, B \in \Gamma) [A \cap B = \emptyset \implies (\exists C \in \Gamma \cap \check{\Gamma}) A \subseteq C \& B \cap C = \emptyset]$



Example (Lusin 1927, Novikov 1935, and others)

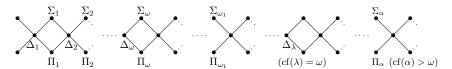
- Π^{0}_{α} has the separation property for any $\alpha < \omega_{1}$.
- Σ_{1}^{1} and \prod_{2}^{1} have the separation property.
- (PD) \sum_{2n+1}^{1} and \prod_{2n+2}^{1} have the separation property.

Nonselfdual pairs are well-ordered, say $(\Gamma_{\alpha}, \check{\Gamma}_{\alpha})_{\alpha < \Theta}$.

Theorem (Van Wasep 1978; Steel 1981)

Exactly one of Γ_{α} and $\check{\Gamma}_{\alpha}$ has the separation property.

- Π_{α} : the one which has the separation property
- Σ_{α} : the other one
- $\Delta_{\alpha} = \Sigma_{\alpha} \cap \Pi_{\alpha}$



Example

 $\Delta_1 = \text{clopen} \ (\underline{\Delta}_1^0); \ \underline{\Sigma}_1 = \text{open} \ (\underline{\Sigma}_1^0); \ \Pi_1 = \text{closed} \ (\underline{\Pi}_1^0);$

 $\begin{array}{l} \boldsymbol{\Delta}_{\alpha},\,\boldsymbol{\Sigma}_{\alpha},\,\boldsymbol{\Pi}_{\alpha}\;(\alpha<\omega_{1})\text{: the }\alpha^{\text{th}}\text{ level of the Hausdorff difference hierarchy}\\ \boldsymbol{\Sigma}_{\omega_{1}}=\boldsymbol{F}_{\sigma}\;(\boldsymbol{\Sigma}_{2}^{\mathbf{0}});\,\boldsymbol{\Pi}_{\omega_{1}}=\boldsymbol{G}_{\delta}\;(\boldsymbol{\Pi}_{2}^{\mathbf{0}})\end{array}$

Example

- $\sum_{\sim 2}^{0}$, $\prod_{\sim 2}^{0}$: Wadge-rank ω_1 .
- $\sum_{\sim 3}^{0}$, $\prod_{\sim 3}^{0}$: Wadge-rank $\omega_{1}^{\omega_{1}}$.
- $\sum_{n=1}^{\infty} \prod_{n=1}^{\infty} \mathbb{E}^{n}$: Wadge-rank $\omega_{1} \uparrow \uparrow n$ (the *n*th level of the superexp hierarchy)
- $\varepsilon_0[\omega_1] := \lim_{n \to \infty} (\omega_1 \uparrow \uparrow n)$: Its cofinality is ω . Hence, the class of rank $\varepsilon_0[\omega_1]$ is selfdual. Moreover, $\Delta_{\varepsilon_0[\omega_1]}$ is far smaller than Δ_{ω}^0 .
- (Wadge) $\varepsilon_{\omega_1}[\omega_1]$: the ω_1^{th} fixed point of the exp. of base ω_1 . $\sum_{\omega}^0, \prod_{\omega}^0$: Wadge-rank $\varepsilon_{\omega_1}[\omega_1]$.

Example

- (Wadge) The Veblen hierarchy of base ω₁:
 φ_α(γ): the γth ordinal closed under +, sup_{n∈ω}, and (φ_β)_{β<α}.
- ϕ_0 enumerates $1, \omega_1, \omega_1^2, \omega_1^3, \dots, \omega_1^{\omega+1}, \omega_1^{\omega+2}, \dots$
- ϕ_1 enumerates 1, $\varepsilon_{\omega_1}[\omega_1], \ldots$
- $\sum_{\sim \omega^{\alpha}}^{0}$, $\prod_{\sim \omega^{\alpha}}^{0}$: Wadge-rank $\phi_{\alpha}(1)$ (0 < α < ω_{1}).
- $\sum_{i=1}^{1}$, $\prod_{i=1}^{1}$: Wadge-rank $\sup_{\xi < \omega_1} \phi_{\xi}(1)$.

 $\mathbb{T} = \{0, 1, \bot\}$: Plotkin's order; $\bot < 0, 1$. For $A, B : \omega^{\omega} \to \mathbb{T}$, A is \mathbb{T} -*m*-Wadge reducible to $B (A \leq_{mw}^{\mathbb{T}} B)$ if for all $n \in \mathbb{N}$ there are $m \in \mathbb{N}$ and a continuous function $\theta : \omega^{\omega} \to \omega^{\omega}$ such that

 $(\forall X \in \omega^{\omega}) A(n^{X}) \leq B(m^{\theta}(X)).$

A is σ -join-reducible if $A \upharpoonright n <_w A$ for any $n \in \omega$.

For a function $f : \omega^{\omega} \to \mathbb{R}$, define $Lev_f : \omega^{\omega} \to \mathbb{T}$ as follows: For any $p, q \in \mathbb{Q}$ with p < q

$$Lev_f(\langle p,q\rangle^X) = \begin{cases} 1 & \text{if } q \leq f(X), \\ 0 & \text{if } f(X) \leq p, \\ \bot & \text{if } p < f(X) < q. \end{cases}$$

A pair (*p*, *q*) is identified with a natural number in an effective manner.

Remark: $f \leq_m g$ iff $Lev_f \leq_{mw}^{\mathbb{T}} Lev_g$.

Main Lemma

 $\forall f: \omega^{\omega} \rightarrow \mathbb{R}, \exists \xi < \Theta \text{ s.t. exactly one of the following holds.}$

- Lev_f is Σ_ξ-complete.
- Lev_f is Π_{ξ} -complete.
- Lev_f is Δ_{ξ} -complete and σ -join-reducible.
- Lev_f is Δ_{ξ} -complete and σ -join-irreducible.

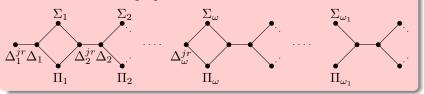
Moreover, each of the above class contains exactly one \mathbb{T} -*m*-W-degree.

This is NOT trivial because there are many more \mathbb{T} -*m*-W-degrees:

The separation property plays a key role to show that the other degrees cannot be realized by functions of the form Lev_f .

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:



The DDW-*m*-degrees form a semi-well-order of height Θ . (Θ = the least ordinal $\alpha > 0$ s.t. there is no surjection from \mathbb{R} onto α .) For a limit ordinal $\xi < \Theta$ and finite $n < \omega$,

- the DDW-*m*-rank $\xi + 3n + c_{\xi}$ consists of two incomparable degrees
- each of the other ranks consists of a single degree.

Here, $c_{\xi} = 2$ if $\xi = 0$; $c_{\xi} = 1$ if $cf(\xi) = \omega$; and $c_{\xi} = 0$ if $cf(\xi) \ge \omega_1$.

Fact: every Polish X admits an open continuous surjection $\delta : \omega^{\omega} \to X$.

Corollary (Polish version of DDW)

 $f: X \to \mathbb{R}$ Baire-one; $\delta: \omega^{\omega} \to X$ open continuous surjection

- $\alpha(f) = \xi + 1$ and either f is left- or right-sided $\iff Lev_{f \circ \delta}$ is either Σ_{ξ} - or Π_{ξ} -complete.
- $\alpha(f) = \xi$ and f is two-sided $\iff Lev_{f \circ \delta}$ is Δ^0_{ξ} -complete and σ -join-irreducible.
- For successor ξ , $\alpha(f) = \xi$ and f is free one-sided $\iff Lev_{f \circ \delta}$ is Δ^0_{ξ} -complete and σ -join-reducible.
- For limit ξ , $\alpha(f) = \xi$ and f is one-sided $\iff Lev_{f \circ \delta}$ is Δ^0_{ξ} -complete and σ -join-reducible.

Note that $\Delta_{\xi}^{0}, \Sigma_{\xi}^{0}$, and Π_{ξ}^{0} are the corresponding pointclasses in the ξ -th rank of the Hausdorff difference hierarchy.

The 2nd Main Theorem

- Natural Solution to Post's Problem: Is there a "natural" intermediate c.e. Turing degree?
- Natural degrees should be relativizable and degree invariant:
 - (Relativizability) It is a function $f: 2^{\omega} \rightarrow 2^{\omega}$.
 - (Degree-Invariance) $X \equiv_T Y$ implies $f(X) \equiv_T f(Y)$.
- (Sacks 1963) Is there a degree invariant c.e. operator which always gives us an intermediate Turing degree?
- (Lachlan 1975) There is no uniformly degree invariant c.e. operator which always gives us an intermediate Turing degree.
- (The Martin Conjecture; a.k.a. the 5th Victoria-Delfino problem)
 - Degree invariant increasing functions are well-ordered,
 - and each successor rank is given by the Turing jump.
- (Cabal) The VD problems 1-5 appeared in 1978; the VD problems 6-14 in 1988.
 Only the 5th and 14th are still unsolved (the 14th asks whether AD⁺ = AD).
- (Steel 1982) The Martin Conjecture holds true for uniformly degree invariant functions.

(Hypothesis) Natural degrees are relativizable and degree-invariant.

 f: 2^ω → 2^ω is uniformly degree invariant (UI) if there is a function u: ω² → ω² such that for all X, Y ∈ 2^ω,

 $X \equiv_T Y$ via $(i, j) \implies f(X) \equiv_T f(Y)$ via u(i, j).

 f: 2^ω → 2^ω is uniformly order preserving (UOP) if there is a function u: ω → ω such that for all X, Y ∈ 2^ω,

 $X \leq_T Y$ via $e \implies f(X) \leq_T f(Y)$ via u(e).

• **f** is Turing reducible to **g** on a cone $(f \leq_{\tau}^{\nabla} g)$ if

 $(\exists C \in 2^{\omega})(\forall X \geq_T C) f(X) \leq_T g(X) \oplus C.$

Theorem (Steel 1982; Slaman-Steel 1988; Becker 1988)

- The \equiv_{τ}^{∇} -degree of UI functions form a well-order of length Θ .
- Every UI function is \equiv_{τ}^{∇} -equivalent to a UOP function.

The DDW *T*-degrees \approx the "natural" Turing degrees.

DDW defined **T**-reducibility for \mathbb{R} -valued functions as parallel continuous (strong) Weihrauch reducibility ($f \leq_T g$ iff $f \leq_{sW}^c \widehat{g}$):

 $f \leq_T g \iff (\exists H, K)(\forall x) K(x, (g(H(n, x))_{n \in \mathbb{N}}) = f(x).$

2nd Main Theorem (K.)

The identity map gives an isomorphism between the \equiv_{τ}^{∇} -degrees of UOP functions and the DDW *T*-degrees of real-valued functions.