Homological Algebra and Reverse Mathematics

(a middle report)

Takeshi Yamazaki

Mathematical institute, Tohoku University
Second Workshop on Mathematical Logic and its
Applications in Kanazawa 2018.03.07
R is a commutative ring with $1 . M, N, L$ etc. are R-modules. We write $M \leq_{R} N$ if M is an R-submodule of N. For $S \subseteq M$, $(S)_{R}$ is an R-submodule generated by S.

Lemma 1 (RCA_{0})

The following statements are equivalent to ACA.
(1) $\forall S \subseteq M,(S)_{R}$ exists.
(2) $\forall M_{i} \leq_{R} M, \sum M_{i}$ exists.
(3) $\forall M \leq_{R} N, \forall$ ideal I of R, IM exists.
(4) $\forall M \leq_{R} N, M: R N=\{a \in R: \forall n \in N(a n \in M)\}$ exists. (Especially, the annihilator $0:_{R} N$ of N exists.)

Lemma 2 (Conidis)

Krull-Azumaya lemma is proved in ACA_{0} : for any finitely generated R-module $M, M=J(M) M \Rightarrow M=0$, where $J(M)$ is the intersection of all maximal ideals.
We use ACA to prove $J(M)=\left\{a: \forall x \in R(1-a x) \in R^{\times}\right\}$ essentially.

A chain complex \mathcal{C} is a chain of R-modules

$$
\rightarrow M_{i+1} \xrightarrow{d_{i+1}} M_{i} \xrightarrow{d_{i}} M_{i-1} \rightarrow
$$

with $d_{i} \circ d_{i+1}=0$.

Definition $3\left(\mathrm{RCA}_{0}\right)$

For an R-hom $f: M \rightarrow N,(L, \varphi)$ is the cokernel of f if $\varphi \circ f=0$ and for any R-hom $\varphi^{\prime}: N \rightarrow L^{\prime}$, if $\varphi^{\prime} \circ f=0$ then there exists a unique R-hom $u: L \rightarrow L^{\prime}$ such that $u \circ \varphi=\varphi^{\prime}$.

Theorem 4

The assertion that any R-hom has the cokernel, is equivalent to ACA_{0} over RCA_{0}.

We may think the range of d_{i+1} is $\operatorname{ker}\left(d_{i}\right) . H_{i}(\mathcal{C})$ is the cokernel of d_{i+1}. Then ACA A_{0} seems needed when we develop homological algebra.
But, as (abstract) simplicial complexes, we often treat only complex chains of finitely generated free \mathbb{Z}-modules. In this case, we can define homology groups within RCA_{0} by the usual way without any additional idea. We can get some simple results in this case. For example, the following result is almost trivial.

Theorem 5

The following assertion is equivalent ACA over RCA_{0} : any complex chain \mathcal{C} of finitely generated free \mathbb{Z}-modules has a sequence $\left\langle\beta_{n}: n \in \mathbb{N}\right\rangle$ such that each β_{n} is the n-th Betii number.
The proof is a simple exercise.

In this talk, we would like to discuss algebraic or categorical properties of modules for more general setting of homological algebra.
The class of all R-hom from M to N, say $\operatorname{Hom}_{R}(M, N)$ is a Π_{1}^{0} class. For an R-hom $f: M \rightarrow N$ and $\varphi: L \rightarrow M$, we write $f^{\#}(\varphi)$ for $f \circ \varphi$. We can think of $f^{\#}$ as a " R-hom" from $\operatorname{Hom}_{R}(L, M)$ to $\operatorname{Hom}_{R}(L, N)$.
By the same way, we can define ${ }^{\#} f: \operatorname{Hom}_{R}(N, L)$ to $\operatorname{Hom}_{R}(M, L)$ by $\# f(\varphi)=\varphi \circ f$.

Proposition $6\left(\mathrm{RCA}_{0}\right)$

Assume that $0 \rightarrow N_{1} \xrightarrow{f} N_{2} \xrightarrow{g} N_{3} \rightarrow 0$ is exact. Then
$0 \rightarrow \operatorname{Hom}_{R}\left(M, N_{1}\right) \xrightarrow{f \#} \operatorname{Hom}_{R}\left(M, N_{2}\right) \xrightarrow{g^{\#}} \operatorname{Hom}_{R}\left(M, N_{3}\right)$ and
$0 \rightarrow \operatorname{Hom}_{R}\left(N_{3}, M\right) \xrightarrow{\# g} \operatorname{Hom}_{R}\left(N_{2}, M\right) \xrightarrow{\# f} \operatorname{Hom}_{R}\left(N_{1}, M\right)$ are exact.
Note that if $N_{1} \xrightarrow{f} N_{2} \xrightarrow{g} N_{3}$ is exact, $\operatorname{Im} f$ exists since $\operatorname{Im} f=\operatorname{Ker} g$.

Proposition 7

The five lemma is proved in RCA_{0}. If we assume that the existence of necessary cokernels, the snake lemma is also proved in RCA_{0}.

Definition $8\left(\mathrm{RCA}_{0}\right)$

$\left(F,\left\langle x_{i}: i \in I\right\rangle\right)$ is a free R-module if $F=\oplus_{i \in I} R x_{i}$.
Sometimes, we only write F for a free R-module, omitting the free basis $\left\langle x_{i}: i \in I\right\rangle$.

Definition $9\left(\mathrm{RCA}_{0}\right)$

A short exact sequence $0 \rightarrow M \xrightarrow{f} N \xrightarrow{g} L \rightarrow 0$ is split if there exists an R-hom $\alpha: N \rightarrow M$ such that $\alpha \circ f=\operatorname{Id}_{M}$.

It is also equivalent to the assertion that there exists an R-hom $\beta: L \rightarrow N$ such that $g \circ \beta=\operatorname{Id}_{L}$. Then $N \simeq M \oplus L$.

Definition $10\left(\mathrm{RCA}_{0}\right)$

(T, φ) is a tensor product of M and N if $\varphi: M \times N \rightarrow T$ is an R-bilinear function and for any R-module T^{\prime} and R-bilinear function $\varphi^{\prime}: M \times N \rightarrow T^{\prime}$, there exists a unique R-hom $u: T \rightarrow T^{\prime}$ satisfying $u \circ \varphi=\varphi^{\prime}$. We write the tensor product of M and N by $M \otimes_{R} N$.

Theorem 11

The following assertions are pairwise equivalent over RCA_{0}.
(1) ACA.
(2) For any two R-modules M and $N, M \otimes_{R} N$ exists.
(3) For any R-module $M, M \otimes_{R} M$ exists.

Proposition $12\left(\mathrm{RCA}_{0}\right)$

$R \otimes_{R} M \simeq M . M \otimes_{R} N \simeq N \otimes_{R} M$, $\left(\oplus M_{i}\right) \otimes_{R} N \simeq \oplus\left(M_{i} \otimes_{R} N\right)$ if they exist, etc.

Definition 13 (RCA_{0})

$(P, F, \iota, \varepsilon)$ is a projective R-module if F is a free R-module, $0 \rightarrow P \xrightarrow{\iota} F \xrightarrow{\varepsilon} P \rightarrow 0$ is split and $\varepsilon \circ \iota=\operatorname{Id}_{P}$.

As before, we only write P for a projective R-module, omitting other objects.

Proposition 14 (RCA_{0})

The following are equivalent to each other.
(1) P is projective.
(2) For any surjecitve R-hom $g: M \rightarrow N$ and any R-hom α, there exists R-hom $\beta: P \rightarrow M$ such that $g \circ \beta=\alpha$.

Proposition 15 (RCA_{0})

$\oplus P_{i}$ is projective iff each P_{i} is projective.

Using Δ_{1}^{0}-indices, we formalize an effective proof and have the following fact.

Lemma $16\left(\mathrm{RCA}_{0}+I \Sigma_{2}^{0}\right)$
For any R-module M, there exist a sequence of free R-modules $\left\langle F_{i}: i \in \mathbb{N}\right\rangle$ and a sequence of R - homomorphisms $\left\langle f_{i}: i \in \mathbb{N}\right\rangle$ such that $\rightarrow F_{i+1} \xrightarrow{f_{i+1}} F_{i} \xrightarrow{f_{i}} F_{i-1} \cdots \rightarrow F_{0} \xrightarrow{f_{0}} M \rightarrow 0$ is exact.
Σ_{2}^{0} is used to verify required properties.
Lemma 16 guarantees the existence of projective resolution for any R-module.

Lemma $17\left(\mathrm{RCA}_{0}+\mathrm{I}_{2}^{0}\right)$

Let $f: M \rightarrow N$ be an R-hom. Assume that

$$
\begin{aligned}
& \rightarrow P_{i+1} \xrightarrow{\partial_{i}} P_{i} \rightarrow \cdots \rightarrow P_{0} \xrightarrow{\varepsilon} M \rightarrow 0, \\
& \rightarrow Q_{i+1} \xrightarrow{\partial_{i}^{\prime}} Q_{i} \cdots \rightarrow \rightarrow Q_{0} \xrightarrow{\varepsilon^{\prime}} N \rightarrow 0
\end{aligned}
$$

are projective resolutions. Then
(1) There is a lifting $\left\langle f_{i}: i \in \mathbb{N}\right\rangle$ of f.
(2) If $\left\langle f_{i}: i \in \mathbb{N}\right\rangle$ and $\left\langle g_{i}: i \in \mathbb{N}\right\rangle$ are liftings of f, then there exists $\left\langle s_{i}: i \in \mathbb{N}\right\rangle$ such that $s_{i-1} \circ \partial_{i}+\partial_{i+1}^{\prime} \circ s_{i}=f_{i}-g_{i}$.

Remark. If each P_{i} and Q_{i} are finitely generated (with generators uniformly), the above is proved in RCA_{0}.

Let $\rightarrow P_{i} \xrightarrow{\partial_{i}} \cdots \rightarrow P_{0} \xrightarrow{\epsilon} M \rightarrow 0$ be a projective resolution.
Then we have
$0 \rightarrow \operatorname{Hom}_{R}\left(P_{0}, N\right) \xrightarrow{\# \partial_{1}} \operatorname{Hom}_{R}\left(P_{1}, N\right) \rightarrow \operatorname{Hom}_{R}\left(P_{2}, N\right) \rightarrow \cdots$.
Let Z_{i} be a Π_{1}^{0}-class of the elements α of $\operatorname{Hom}_{R}\left(P_{i}, N\right)$ such that $\alpha \circ \partial_{i+1}=0$. Define $\alpha={ }_{i} \beta$ by $\alpha-\beta=\gamma \circ \partial_{i}$ for some $\gamma \in \operatorname{Hom}_{R}\left(P_{i}, N\right)$.
We define $\operatorname{Ext}_{R}^{i}(M, N)$ by $\left(Z_{i},={ }_{i}\right)$ within $\mathrm{RCA}_{0}+I \Sigma_{2}^{0}$. Lemma 16 tells us that we may assume that this definition is independent of projective resolutions. It is not difficult to show that $\operatorname{Ext}_{R}^{i}(M, N)$ acts a functor.
If a chain complex $\rightarrow P_{i} \otimes N \rightarrow \cdots \rightarrow P_{0} \otimes N \rightarrow 0$ is given, we can also define a functor $\operatorname{Tor}_{R}^{i}(M, N)$ within $\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{2}^{0}$.

Definition $18\left(\mathrm{RCA}_{0}\right)$

An R-module I is injective if for any R-monomorphism $f: M \rightarrow N$ and any R-hom $\alpha: M \rightarrow I$, there exists an R-hom
$\beta: N \rightarrow I$ such that $\beta \circ f=\alpha$.

Proposition 19 (RCA_{0})

The following are equivalent to each other.
(1) ACA.
(2) Baer's test: "For any ideal J of R and any R-hom $\alpha: J \rightarrow I$, there exists an R-hom $\beta: J \rightarrow I$ such that $\beta \mid J=\alpha$ " implies that I is injective.

Proposition 20 (RCA_{0})

Any \mathbb{Z}-module M has an injective \mathbb{Z}-module N such that $M \leq_{\mathbb{Z}} N$.

Proposition 21 (ACA_{0}; Wu \& Wu, 16)

If R is a P.I.D., then any submodule of a free R-module is free.

Let $\mathcal{I}=\left(I,\left\langle J\left(i, i^{\prime}\right): i, i^{\prime} \in I\right\rangle, \circ\right)$ be a category.
I is the set of objects and $J\left(i, i^{\prime}\right)$ is the set of arrows from i to i^{\prime}.
A pair of sequences $\left(\left\langle M_{i}: i \in I\right\rangle,\left\langle\left\langle f_{\varphi}: \varphi \in J\left(i, i^{\prime}\right)\right\rangle: i, i^{\prime} \in I\right\rangle\right)$ is said to be a diagram of type \mathcal{I} if (1) each f_{φ} is an R-hom from $M_{\text {dom } \varphi}$ to $M_{\text {codom } \varphi,}$, (2) $f_{\mathrm{Id}_{i}}=\operatorname{Id}_{M_{i}}$ for all $i \in I$, and (3) $f_{\varphi_{1} \circ \varphi_{2}}=f_{\varphi_{1}} \circ f_{\varphi_{2}}$ for any adequate arrows φ_{1}, φ_{2}.
Then we can define the inductive limit $\left(L,\left\langle\iota_{i}: i \in I\right\rangle\right)$ by the usual way.

It is unique up to isomorphism if it exists. We write $\lim _{\rightarrow i \in I} M_{i}$ for the inductive limit. We also define the projective limit as the dual of inductive limit and write $\lim _{\leftarrow i \in I} M_{i}$ for it.

Proposition 22 (RCA_{0})

ACA is equivalent to the statement that any diagram has the inductive limit. Especially, the existence of the co-equalizer (or pushout) for two R-homomorphisms implies ACA.

Proposition 23 (RCA_{0})

Any diagram of a finite type has the projective limit.
Especially, the equalizer (or pullack) for any two
R-homomorphisms exists.

Proposition 24 (RCA_{0})

Let \mathcal{I}_{1} and \mathcal{I}_{2} be categories. Assume that
$\left(\left\langle M_{i_{1} i_{2}}:\left(i_{1}, i_{2}\right) \in I_{1} \times I_{2}\right\rangle, \cdots\right)$ is a diagram of $\mathcal{I}_{1} \times \mathcal{I}_{2}$. Then

$$
\lim _{\rightarrow i_{1} \in I_{1}} \lim _{\rightarrow i_{2} \in I_{2}} M_{i_{1} i_{2}} \simeq \lim _{\rightarrow i_{2} \in I_{2}} \lim _{\rightarrow i_{1} \in I_{1}} M_{i_{1} i_{2}} \simeq \lim _{\rightarrow\left(i_{1}, i_{2}\right) \in I_{1} \times I_{2}} M_{i_{1} i_{2}},
$$

if the above limits exist.
A category $\mathcal{I}=\left(I,\left\langle J\left(i, i^{\prime}\right): i, i^{\prime} \in I\right\rangle, 0\right)$ is filtered if $(1) I$ is not empty, (2) $\forall i, i^{\prime} \exists i^{\prime \prime}\left(J\left(i, i^{\prime \prime}\right) \neq \emptyset \wedge J\left(i^{\prime}, i^{\prime \prime}\right) \neq \emptyset\right)$, and (3) $\forall \varphi_{1}, \varphi_{2} \in J\left(i, i^{\prime}\right) \exists \mu \in J\left(i^{\prime}, j\right)$ such that $\mu \circ \varphi_{1}=\mu \circ \varphi_{2}$.

Proposition 25 (RCA_{0})

Let $\left(\left\langle M_{i}: i \in I\right\rangle, \cdots\right)$ be a diagram of a filtered category \mathcal{I}. Then

$$
\lim _{\rightarrow i \in I} M_{i} \simeq \coprod M_{i} / \sim
$$

where $x \sim y \Leftrightarrow \varphi(x)=\psi(y)$ for some $\varphi \in J\left(i, i^{*}\right)$ and $\psi \in J\left(i^{\prime}, i^{*}\right)$, for $x \in M_{i}$ and $y \in M_{i^{\prime}}$.

Note that the above proposition doesn't mention the existence of $\lim _{\rightarrow i \in I} M_{i}$ and $\coprod M_{i} / \sim$.

Proposition 26 (RCA_{0})

Let \mathcal{I}_{1} be a filtered category and \mathcal{I}_{2} be a finite category. Assume that $\left(\left\langle M_{i_{1} i_{2}}:\left(i_{1}, i_{2}\right) \in I_{1} \times I_{2}\right\rangle, \cdots\right)$ is a diagram of $\mathcal{I}_{1} \times \mathcal{I}_{2}^{o p}$. Then

$$
\lim _{\rightarrow i_{1} \in I_{1}} \lim _{\leftarrow i_{2} \in I_{2}} M_{i_{1} i_{2}} \simeq \lim _{\leftarrow i_{2} \in I_{2} \rightarrow i_{1} \in I_{1}} \lim _{i_{1} i_{2}},
$$

if the above limits exist.

Proposition 27 (ACA_{0})

Let $\mathcal{M}^{k}=\left(\left\langle M_{i}^{k}: i \in I\right\rangle, \cdots\right)$ is a diagram of \mathcal{I} for $k=1,2,3$. Let $\left\langle g_{i}\right\rangle: \mathcal{M}^{1} \rightarrow \mathcal{M}^{2}$ and $\left\langle h_{i}\right\rangle: \mathcal{M}^{2} \rightarrow \mathcal{M}^{3}$ be homomorphisms. Assume that each $M_{i}^{1} \rightarrow M_{i}^{2} \rightarrow M_{i}^{3}$ is exact. Then $\lim _{\rightarrow i \in I} M_{i}^{1} \rightarrow \lim _{\rightarrow i \in I} M_{i}^{2} \rightarrow \lim _{\rightarrow i \in I} M_{i}^{3}$.

Proposition 28 (RCA_{0})

Let \mathcal{I}_{1} be a filtered category and \mathcal{I}_{2} be a finite category. Assume that $\left(\left\langle M_{i_{1} i_{2}}:\left(i_{1}, i_{2}\right) \in I_{1} \times I_{2}\right\rangle, \cdots\right)$ is a diagram of $\mathcal{I}_{1} \times \mathcal{I}_{2}^{o p}$. Then

$$
\lim _{\rightarrow i_{1} \in I_{1} \leftarrow i_{2} \in I_{2}} \lim _{i_{1} i_{2}} \simeq \lim _{\leftarrow i_{2} \in I_{2} \rightarrow i_{1} \in I_{1}} \lim _{i_{1} i_{2}},
$$

if the above limits exist.

References

目 Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge university press, 2009.

圊 Charles A. Weibel, An introduction to homological algebra, Cambridge studies in advanced mathematics, Cambridge University Press, 1994.

Husian Wu, Computability theory and algebra, Thesis Nanyang technological university, 2017.

