Homological Algebra and Reverse Mathematics (a middle report)

Takeshi Yamazaki

Mathematical institute, Tohoku University

Second Workshop on Mathematical Logic and its Applications in Kanazawa 2018.03.07 *R* is a commutative ring with 1. *M*, *N*, *L* etc. are *R*-modules. We write $M \leq_R N$ if *M* is an *R*-submodule of *N*. For $S \subseteq M$, $(S)_R$ is an *R*-submodule generated by *S*.

Lemma 1 (RCA₀)

The following statements are equivalent to ACA.

(1)
$$\forall S \subseteq M$$
, $(S)_R$ exists.

(2)
$$\forall M_i \leq_R M$$
, $\sum M_i$ exists.

(3)
$$\forall M \leq_R N, \forall$$
 ideal I of R, IM exists.

(4)
$$\forall M \leq_R N, M :_R N = \{a \in R : \forall n \in N (an \in M)\}$$
 exists.
(Especially, the annihilator $0 :_R N$ of N exists.)

Lemma 2 (Conidis)

Krull-Azumaya lemma is proved in ACA₀: for any finitely generated R-module M, $M = J(M)M \Rightarrow M = 0$, where J(M) is the intersection of all maximal ideals.

We use ACA to prove $J(M) = \{a : \forall x \in R(1 - ax) \in R^{\times}\}$ essentially.

A chain complex C is a chain of R-modules

$$\rightarrow M_{i+1} \xrightarrow{d_{i+1}} M_i \xrightarrow{d_i} M_{i-1} \rightarrow,$$

with $d_i \circ d_{i+1} = 0$.

Definition 3 (RCA₀)

For an R-hom $f : M \to N$, (L, φ) is the cokernel of f if $\varphi \circ f = 0$ and for any R-hom $\varphi' : N \to L'$, if $\varphi' \circ f = 0$ then there exists a unique R-hom $u : L \to L'$ such that $u \circ \varphi = \varphi'$.

Theorem 4

The assertion that any R-hom has the cokernel, is equivalent to ACA_0 over RCA_0 .

We may think the range of d_{i+1} is ker (d_i) . $H_i(\mathcal{C})$ is the cokernel of d_{i+1} . Then ACA₀ seems needed when we develop homological algebra.

But, as (abstract) simplicial complexes, we often treat only complex chains of finitely generated free \mathbb{Z} -modules. In this case, we can define homology groups within RCA₀ by the usual way without any additional idea. We can get some simple results in this case. For example, the following result is almost trivial.

Theorem 5

The following assertion is equivalent ACA over RCA₀: any complex chain C of finitely generated free \mathbb{Z} -modules has a sequence $\langle \beta_n : n \in \mathbb{N} \rangle$ such that each β_n is the n-th Betii number.

The proof is a simple exercise.

In this talk, we would like to discuss algebraic or categorical properties of modules for more general setting of homological algebra.

The class of all *R*-hom from *M* to *N*, say $\operatorname{Hom}_R(M, N)$ is a Π_1^0 class. For an *R*-hom $f: M \to N$ and $\varphi: L \to M$, we write $f^{\#}(\varphi)$ for $f \circ \varphi$. We can think of $f^{\#}$ as a "*R*-hom" from $\operatorname{Hom}_R(L, M)$ to $\operatorname{Hom}_R(L, N)$. By the same way, we can define ${}^{\#}f: \operatorname{Hom}_R(N, L)$ to $\operatorname{Hom}_R(M, L)$ by ${}^{\#}f(\varphi) = \varphi \circ f$.

Proposition 6 (RCA₀)

Assume that $0 \to N_1 \xrightarrow{f} N_2 \xrightarrow{g} N_3 \to 0$ is exact. Then $0 \to \operatorname{Hom}_R(M, N_1) \xrightarrow{f^{\#}} \operatorname{Hom}_R(M, N_2) \xrightarrow{g^{\#}} \operatorname{Hom}_R(M, N_3)$ and $0 \to \operatorname{Hom}_R(N_3, M) \xrightarrow{\#g} \operatorname{Hom}_R(N_2, M) \xrightarrow{\#f} \operatorname{Hom}_R(N_1, M)$ are exact.

Note that if $N_1 \xrightarrow{f} N_2 \xrightarrow{g} N_3$ is exact, $\operatorname{Im} f$ exists since $\operatorname{Im} f = \operatorname{Ker} g$.

Proposition 7

The five lemma is proved in RCA_0 . If we assume that the existence of necessary cokernels, the snake lemma is also proved in RCA_0 .

Definition 8 (RCA₀)

 $(F, \langle x_i : i \in I \rangle)$ is a free *R*-module if $F = \bigoplus_{i \in I} Rx_i$.

Sometimes, we only write *F* for a free *R*-module, omitting the free basis $\langle x_i : i \in I \rangle$.

Definition 9 (RCA_0)

A short exact sequence $0 \to M \xrightarrow{f} N \xrightarrow{g} L \to 0$ is split if there exists an R-hom $\alpha : N \to M$ such that $\alpha \circ f = \mathrm{Id}_M$.

It is also equivalent to the assertion that there exists an R-hom $\beta: L \to N$ such that $g \circ \beta = \text{Id}_L$. Then $N \simeq M \oplus L$.

Definition 10 (RCA₀)

 (T, φ) is a tensor product of M and N if $\varphi : M \times N \to T$ is an R-bilinear function and for any R-module T' and R-bilinear function $\varphi' : M \times N \to T'$, there exists a unique R-hom $u : T \to T'$ satisfying $u \circ \varphi = \varphi'$. We write the tensor product of M and N by $M \otimes_R N$.

Theorem 11

The following assertions are pairwise equivalent over RCA₀. (1) ACA.

- (2) For any two *R*-modules *M* and *N*, $M \otimes_R N$ exists.
- (3) For any *R*-module M, $M \otimes_R M$ exists.

Proposition 12 (RCA₀)

 $\begin{array}{l} R \otimes_R M \simeq M. \ M \otimes_R N \simeq N \otimes_R M, \\ (\oplus M_i) \otimes_R N \simeq \oplus (M_i \otimes_R N) \ \text{if they exist, etc.} \end{array}$

Definition 13 (RCA₀)

 $(P, F, \iota, \varepsilon)$ is a projective *R*-module if *F* is a free *R*-module, $0 \rightarrow P \xrightarrow{\iota} F \xrightarrow{\varepsilon} P \rightarrow 0$ is split and $\varepsilon \circ \iota = \mathrm{Id}_P$.

As before, we only write P for a projective R-module, omitting other objects.

Proposition 14 (RCA_0)

The following are equivalent to each other.

- (1) P is projective.
- (2) For any surjective R-hom $g : M \to N$ and any R-hom α , there exists R-hom $\beta : P \to M$ such that $g \circ \beta = \alpha$.

Proposition 15 (RCA_0)

 $\oplus P_i$ is projective iff each P_i is projective.

Using Δ_1^0 -indices, we formalize an effective proof and have the following fact.

Lemma 16 (RCA₀+I Σ_2^0)

For any R-module M, there exist a sequence of free R-modules $\langle F_i : i \in \mathbb{N} \rangle$ and a sequence of R- homomorphisms $\langle f_i : i \in \mathbb{N} \rangle$ such that $\rightarrow F_{i+1} \xrightarrow{f_{i+1}} F_i \xrightarrow{f_i} F_{i-1} \cdots \rightarrow F_0 \xrightarrow{f_0} M \rightarrow 0$ is exact.

 $I\Sigma_2^0$ is used to verify required properties.

Lemma 16 guarantees the existence of projective resolution for any R-module.

Lemma 17 (RCA₀+I Σ_2^0)

Let $f : M \to N$ be an R-hom. Assume that

$$ightarrow P_{i+1} \xrightarrow{\partial_i} P_i
ightarrow \cdots
ightarrow P_0 \xrightarrow{\varepsilon} M
ightarrow 0,$$

$$ightarrow Q_{i+1} \xrightarrow{\partial'_i} Q_i \cdots
ightarrow Q_0 \xrightarrow{\varepsilon'} N
ightarrow 0$$

are projective resolutions. Then

There is a lifting ⟨f_i : i ∈ N⟩ of f.
 If ⟨f_i : i ∈ N⟩ and ⟨g_i : i ∈ N⟩ are liftings of f, then there exists⟨s_i : i ∈ N⟩ such that s_{i-1} ∘ ∂_i + ∂'_{i+1} ∘ s_i = f_i - g_i.

Remark. If each P_i and Q_i are finitely generated (with generators uniformly), the above is proved in RCA₀.

Let $\rightarrow P_i \xrightarrow{\partial_i} \cdots \rightarrow P_0 \xrightarrow{\epsilon} M \rightarrow 0$ be a projective resolution. Then we have

$$0 \to \operatorname{Hom}_{R}(P_{0}, N) \xrightarrow{\#_{\partial_{1}}} \operatorname{Hom}_{R}(P_{1}, N) \to \operatorname{Hom}_{R}(P_{2}, N) \to \cdots$$

Let Z_i be a Π_1^0 -class of the elements α of $\operatorname{Hom}_R(P_i, N)$ such that $\alpha \circ \partial_{i+1} = 0$. Define $\alpha =_i \beta$ by $\alpha - \beta = \gamma \circ \partial_i$ for some $\gamma \in \operatorname{Hom}_R(P_i, N)$.

We define $\operatorname{Ext}_{R}^{i}(M, N)$ by $(Z_{i}, =_{i})$ within $\operatorname{RCA}_{0} + \operatorname{I}\Sigma_{2}^{0}$. Lemma 16 tells us that we may assume that this definition is independent of projective resolutions. It is not difficult to show that $\operatorname{Ext}_{R}^{i}(M, N)$ acts a functor. If a chain complex $\rightarrow P_{i} \otimes N \rightarrow \cdots \rightarrow P_{0} \otimes N \rightarrow 0$ is given,

we can also define a functor $\operatorname{Tor}_{R}^{i}(M, N)$ within $\operatorname{RCA}_{0}+I\Sigma_{2}^{0}$.

Definition 18 (RCA₀)

An R-module I is injective if for any R-monomorphism $f: M \to N$ and any R-hom $\alpha : M \to I$, there exists an R-hom $\beta : N \to I$ such that $\beta \circ f = \alpha$.

R-hom I such that

Proposition 19 (RCA₀)

(1

The following are equivalent to each other.

Proposition 20 (RCA_0)

Any \mathbb{Z} -module M has an injective \mathbb{Z} -module N such that $M \leq_{\mathbb{Z}} N$.

Proposition 21 (ACA₀; Wu & Wu, 16)

If R is a P.I.D., then any submodule of a free R-module is free.

Let $\mathcal{I} = (I, \langle J(i, i') : i, i' \in I \rangle, \circ)$ be a category. *I* is the set of objects and J(i, i') is the set of arrows from *i* to *i'*.

A pair of sequences $(\langle M_i : i \in I \rangle, \langle \langle f_{\varphi} : \varphi \in J(i, i') \rangle : i, i' \in I \rangle)$ is said to be a diagram of type \mathcal{I} if (1) each f_{φ} is an *R*-hom from $M_{\text{dom}\varphi}$ to $M_{\text{codom}\varphi}$, (2) $f_{\text{Id}_i} = \text{Id}_{M_i}$ for all $i \in I$, and (3) $f_{\varphi_1 \circ \varphi_2} = f_{\varphi_1} \circ f_{\varphi_2}$ for any adequate arrows φ_1, φ_2 .

Then we can define the inductive limit $(L, \langle \iota_i : i \in I \rangle)$ by the usual way.

It is unique up to isomorphism if it exists. We write $\lim_{i \in I} M_i$ for the inductive limit. We also define the projective limit as the dual of inductive limit and write $\lim_{i \in I} M_i$ for it.

Proposition 22 (RCA₀)

ACA is equivalent to the statement that any diagram has the inductive limit. Especially, the existence of the co-equalizer (or pushout) for two R-homomorphisms implies ACA.

Proposition 23 (RCA₀)

Any diagram of a finite type has the projective limit. Especially, the equalizer (or pullack) for any two *R*-homomorphisms exists.

Proposition 24 (RCA_0)

Let \mathcal{I}_1 and \mathcal{I}_2 be categories. Assume that $(\langle M_{i_1i_2} : (i_1, i_2) \in I_1 \times I_2 \rangle, \cdots)$ is a diagram of $\mathcal{I}_1 \times \mathcal{I}_2$. Then $\lim_{i_1 \in I_1} \lim_{i_2 \in I_2} M_{i_1i_2} \simeq \lim_{i_2 \in I_2} \lim_{i_1 \in I_1} M_{i_1i_2} \simeq \lim_{i_1(i_1, i_2) \in I_1 \times I_2} M_{i_1i_2},$

if the above limits exist.

A category $\mathcal{I} = (I, \langle J(i, i') : i, i' \in I \rangle, \circ)$ is filtered if (1) I is not empty, (2) $\forall i, i' \exists i'' (J(i, i'') \neq \emptyset \land J(i', i'') \neq \emptyset)$, and (3) $\forall \varphi_1, \varphi_2 \in J(i, i') \exists \mu \in J(i', j)$ such that $\mu \circ \varphi_1 = \mu \circ \varphi_2$.

Proposition 25 (RCA₀)

Let $(\langle M_i : i \in I \rangle, \cdots)$ be a diagram of a filtered category \mathcal{I} . Then

$$\lim_{i \in I} M_i \simeq \prod M_i / \sim,$$

where $x \sim y \Leftrightarrow \varphi(x) = \psi(y)$ for some $\varphi \in J(i, i^*)$ and $\psi \in J(i', i^*)$, for $x \in M_i$ and $y \in M_{i'}$.

Note that the above proposition doesn't mention the existence of $\lim_{i \in I} M_i$ and $\coprod M_i / \sim$.

Proposition 26 (RCA₀)

Let \mathcal{I}_1 be a filtered category and \mathcal{I}_2 be a finite category. Assume that $(\langle M_{i_1i_2} : (i_1, i_2) \in I_1 \times I_2 \rangle, \cdots)$ is a diagram of $\mathcal{I}_1 \times \mathcal{I}_2^{op}$. Then

$$\lim_{i_1\in I_1}\lim_{i_2\in I_2}M_{i_1i_2}\simeq \lim_{i_1i_2\in I_2}\lim_{i_1\in I_1}M_{i_1i_2},$$

if the above limits exist.

Proposition 27 (ACA_0)

Let $\mathcal{M}^k = (\langle M_i^k : i \in I \rangle, \cdots)$ is a diagram of \mathcal{I} for k = 1, 2, 3. Let $\langle g_i \rangle : \mathcal{M}^1 \to \mathcal{M}^2$ and $\langle h_i \rangle : \mathcal{M}^2 \to \mathcal{M}^3$ be homomorphisms. Assume that each $M_i^1 \to M_i^2 \to M_i^3$ is exact. Then $\lim_{i \to i \in I} M_i^1 \to \lim_{i \to i \in I} M_i^2 \to \lim_{i \to i \in I} M_i^3$.

Proposition 28 (RCA₀)

Let \mathcal{I}_1 be a filtered category and \mathcal{I}_2 be a finite category. Assume that $(\langle M_{i_1i_2} : (i_1, i_2) \in I_1 \times I_2 \rangle, \cdots)$ is a diagram of $\mathcal{I}_1 \times \mathcal{I}_2^{op}$. Then

$$\lim_{i_1 \in I_1} \lim_{i_1 \in I_2} M_{i_1 i_2} \simeq \lim_{i_2 \in I_2} \lim_{i_1 \in I_1} M_{i_1 i_2},$$

if the above limits exist.

- Stephen G. Simpson, *Subsystems of second order arithmetic, 2nd ed.*, Perspectives in Logic, Cambridge university press, 2009.
- Charles A. Weibel, *An introduction to homological algebra*, Cambridge studies in advanced mathematics, Cambridge University Press, 1994.
- Husian Wu, *Computability theory and algebra*, Thesis Nanyang technological university, 2017.