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R is a commutative ring with 1. M ,N , L etc. are R-modules.
We write M ≤R N if M is an R-submodule of N . For S ⊆ M ,
(S)R is an R-submodule generated by S .

Lemma 1 (RCA0)

The following statements are equivalent to ACA.
(1) ∀S ⊆ M, (S)R exists.

(2) ∀Mi ≤R M,
∑

Mi exists.

(3) ∀M ≤R N, ∀ ideal I of R, IM exists.
(4) ∀M ≤R N, M :R N = {a ∈ R : ∀n ∈ N(an ∈ M)} exists.

(Especially, the annihilator 0 :R N of N exists.)

Lemma 2 (Conidis)

Krull-Azumaya lemma is proved in ACA0: for any finitely
generated R-module M, M = J(M)M ⇒ M = 0, where J(M)
is the intersection of all maximal ideals.

We use ACA to prove J(M) = {a : ∀x ∈ R(1− ax) ∈ R×}
essentially.



A chain complex C is a chain of R-modules

→ Mi+1
di+1−−→ Mi

di−→ Mi−1 →,

with di ◦ di+1 = 0.

Definition 3 (RCA0)

For an R-hom f : M → N, (L, φ) is the cokernel of f if
φ ◦ f = 0 and for any R-hom φ′ : N → L′, if φ′ ◦ f = 0 then
there exists a unique R-hom u : L → L′ such that u ◦ φ = φ′.

Theorem 4

The assertion that any R-hom has the cokernel, is equivalent
to ACA0 over RCA0.



We may think the range of di+1 is ker(di). Hi(C) is the
cokernel of di+1. Then ACA0 seems needed when we develop
homological algebra.
But, as (abstract) simplicial complexes, we often treat only
complex chains of finitely generated free Z-modules. In this
case, we can define homology groups within RCA0 by the
usual way without any additional idea. We can get some
simple results in this case. For example, the following result is
almost trivial.

Theorem 5

The following assertion is equivalent ACA over RCA0: any
complex chain C of finitely generated free Z-modules has a
sequence ⟨βn : n ∈ N⟩ such that each βn is the n-th Betii
number.

The proof is a simple exercise.



In this talk, we would like to discuss algebraic or categorical
properties of modules for more general setting of homological
algebra.
The class of all R-hom fromM to N , say HomR(M ,N) is a Π0

1
class. For an R-hom f : M → N and φ : L → M , we write
f #(φ) for f ◦ φ. We can think of f # as a ”R-hom” from
HomR(L,M) to HomR(L,N).
By the same way, we can define #f : HomR(N , L) to
HomR(M , L) by #f (φ) = φ ◦ f .

Proposition 6 (RCA0)

Assume that 0 → N1
f−→ N2

g−→ N3 → 0 is exact. Then

0 → HomR(M ,N1)
f #−→ HomR(M ,N2)

g#

−→ HomR(M ,N3) and

0 → HomR(N3,M)
#g−−→ HomR(N2,M)

#f−→ HomR(N1,M) are
exact.

Note that if N1
f−→ N2

g−→ N3 is exact, Im f exists since
Im f=Ker g .



Proposition 7

The five lemma is proved in RCA0. If we assume that the
existence of necessary cokernels, the snake lemma is also
proved in RCA0.

Definition 8 (RCA0)

(F , ⟨xi : i ∈ I ⟩) is a free R-module if F = ⊕i∈IRxi .

Sometimes, we only write F for a free R-module, omitting the
free basis ⟨xi : i ∈ I ⟩.

Definition 9 (RCA0)

A short exact sequence 0 → M
f−→ N

g−→ L → 0 is split if there
exists an R-hom α : N → M such that α ◦ f = IdM .

It is also equivalent to the assertion that there exists an
R-hom β : L → N such that g ◦ β = IdL. Then N ≃ M ⊕ L.



Definition 10 (RCA0)

(T , φ) is a tensor product of M and N if φ : M × N → T is
an R-bilinear function and for any R-module T ′ and R-bilinear
function φ′ : M × N → T ′ , there exists a unique R-hom
u : T → T ′ satisfying u ◦ φ = φ′. We write the tensor product
of M and N by M ⊗R N.

Theorem 11

The following assertions are pairwise equivalent over RCA0.
(1) ACA.
(2) For any two R-modules M and N, M ⊗R N exists.
(3) For any R-module M, M ⊗R M exists.

Proposition 12 (RCA0)

R ⊗R M ≃ M. M ⊗R N ≃ N ⊗R M,
(⊕Mi)⊗R N ≃ ⊕(Mi ⊗R N) if they exist, etc.



Definition 13 (RCA0)

(P , F , ι, ε) is a projective R-module if F is a free R-module,

0 → P
ι−→ F

ε−→ P → 0 is split and ε ◦ ι = IdP .

As before, we only write P for a projective R-module, omitting
other objects.

Proposition 14 (RCA0)

The following are equivalent to each other.
(1) P is projective.
(2) For any surjecitve R-hom g : M → N and any R-hom α,

there exists R-hom β : P → M such that g ◦ β = α.

Proposition 15 (RCA0)

⊕Pi is projective iff each Pi is projective.



Using ∆0
1-indices, we formalize an effective proof and have the

following fact.

Lemma 16 (RCA0+IΣ0
2)

For any R-module M, there exist a sequence of free R-modules
⟨Fi : i ∈ N⟩ and a sequence of R- homomorphisms ⟨fi : i ∈ N⟩
such that → Fi+1

fi+1−−→ Fi
fi−→ Fi−1 · · · → F0

f0−→ M → 0 is exact.

IΣ0
2 is used to verify required properties.

Lemma 16 guarantees the existence of projective resolution for
any R-module.



Lemma 17 (RCA0+IΣ0
2)

Let f : M → N be an R-hom. Assume that

→ Pi+1
∂i−→ Pi → · · · → P0

ε−→ M → 0,

→ Qi+1

∂′
i−→ Qi · · · →→ Q0

ε′−→ N → 0

are projective resolutions. Then
(1) There is a lifting ⟨fi : i ∈ N⟩ of f .
(2) If ⟨fi : i ∈ N⟩ and ⟨gi : i ∈ N⟩ are liftings of f , then there

exists⟨si : i ∈ N⟩ such that si−1 ◦ ∂i + ∂′i+1 ◦ si = fi − gi .

Remark. If each Pi and Qi are finitely generated (with
generators uniformly), the above is proved in RCA0.



Let → Pi
∂i−→ · · · → P0

ϵ−→ M → 0 be a projective resolution.
Then we have

0 → HomR(P0,N)
#∂1−−→ HomR(P1,N) → HomR(P2,N) → · · · .

Let Zi be a Π0
1-class of the elements α of HomR(Pi ,N) such

that α ◦ ∂i+1 = 0. Define α =i β by α− β = γ ◦ ∂i for some
γ ∈ HomR(Pi ,N).
We define ExtiR(M ,N) by (Zi ,=i) within RCA0+IΣ0

2. Lemma
16 tells us that we may assume that this definition is
independent of projective resolutions. It is not difficult to show
that ExtiR(M ,N) acts a functor.
If a chain complex → Pi ⊗ N → · · · → P0 ⊗ N → 0 is given,
we can also define a functor ToriR(M ,N) within RCA0+IΣ0

2.



Definition 18 (RCA0)

An R-module I is injective if for any R-monomorphism
f : M → N and any R-hom α : M → I , there exists an R-hom
β : N → I such that β ◦ f = α.

Proposition 19 (RCA0)

The following are equivalent to each other.
(1) ACA.
(2) Baer’s test: “For any ideal J of R and any R-hom

α : J → I , there exists an R-hom β : J → I such that
β|J = α” implies that I is injective.

Proposition 20 (RCA0)

Any Z-module M has an injective Z-module N such that
M ≤Z N.

Proposition 21 (ACA0; Wu & Wu, 16)

If R is a P.I.D., then any submodule of a free R-module is free.



Let I = (I , ⟨J(i , i ′) : i , i ′ ∈ I ⟩, ◦) be a category.
I is the set of objects and J(i , i ′) is the set of arrows from i to
i ′.

A pair of sequences (⟨Mi : i ∈ I ⟩, ⟨⟨fφ : φ ∈ J(i , i ′)⟩ : i , i ′ ∈ I ⟩)
is said to be a diagram of type I if (1) each fφ is an R-hom
from Mdomφ to Mcodomφ, (2) fIdi = IdMi

for all i ∈ I , and (3)
fφ1◦φ2 = fφ1 ◦ fφ2 for any adequate arrows φ1, φ2.

Then we can define the inductive limit (L, ⟨ιi : i ∈ I ⟩) by the
usual way.



It is unique up to isomorphism if it exists. We write lim→i∈I Mi

for the inductive limit. We also define the projective limit as
the dual of inductive limit and write lim←i∈I Mi for it.

Proposition 22 (RCA0)

ACA is equivalent to the statement that any diagram has the
inductive limit. Especially, the existence of the co-equalizer (or
pushout) for two R-homomorphisms implies ACA.

Proposition 23 (RCA0)

Any diagram of a finite type has the projective limit.
Especially, the equalizer (or pullack) for any two
R-homomorphisms exists.



Proposition 24 (RCA0)

Let I1 and I2 be categories. Assume that
(⟨Mi1i2 : (i1, i2) ∈ I1 × I2⟩, · · · ) is a diagram of I1 × I2. Then

lim
→i1∈I1

lim
→i2∈I2

Mi1i2 ≃ lim
→i2∈I2

lim
→i1∈I1

Mi1i2 ≃ lim
→(i1,i2)∈I1×I2

Mi1i2 ,

if the above limits exist.

A category I = (I , ⟨J(i , i ′) : i , i ′ ∈ I ⟩, ◦) is filtered if (1) I is
not empty, (2) ∀i , i ′∃i ′′(J(i , i ′′) ̸= ∅ ∧ J(i ′, i ′′) ̸= ∅), and (3)
∀φ1, φ2 ∈ J(i , i ′)∃µ ∈ J(i ′, j) such that µ ◦ φ1 = µ ◦ φ2.

Proposition 25 (RCA0)

Let (⟨Mi : i ∈ I ⟩, · · · ) be a diagram of a filtered category I.
Then

lim
→i∈I

Mi ≃
⨿

Mi/ ∼,

where x ∼ y ⇔ φ(x) = ψ(y) for some φ ∈ J(i , i∗) and
ψ ∈ J(i ′, i∗), for x ∈ Mi and y ∈ Mi ′ .



Note that the above proposition doesn’t mention the existence
of lim→i∈I Mi and

⨿
Mi/ ∼.

Proposition 26 (RCA0)

Let I1 be a filtered category and I2 be a finite category.
Assume that (⟨Mi1i2 : (i1, i2) ∈ I1 × I2⟩, · · · ) is a diagram of
I1 × Iop

2 . Then

lim
→i1∈I1

lim
←i2∈I2

Mi1i2 ≃ lim
←i2∈I2

lim
→i1∈I1

Mi1i2 ,

if the above limits exist.

Proposition 27 (ACA0)

Let Mk = (⟨Mk
i : i ∈ I ⟩, · · · ) is a diagram of I for k = 1, 2, 3.

Let ⟨gi⟩ : M1 → M2 and ⟨hi⟩ : M2 → M3 be
homomorphisms. Assume that each M1

i → M2
i → M3

i is exact.
Then lim→i∈I M

1
i → lim→i∈I M

2
i → lim→i∈I M

3
i .



Proposition 28 (RCA0)

Let I1 be a filtered category and I2 be a finite category.
Assume that (⟨Mi1i2 : (i1, i2) ∈ I1 × I2⟩, · · · ) is a diagram of
I1 × Iop

2 . Then

lim
→i1∈I1

lim
←i2∈I2

Mi1i2 ≃ lim
←i2∈I2

lim
→i1∈I1

Mi1i2 ,

if the above limits exist.
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