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B. Riemann

For which functions F : [—m, 7] — R do there exists reals

bo, a1, by, . .. such that, for all x in [—m, 7],
F(x) = bo —|—Za sin nx + b, cos nx?
2 n

n>0

(Habilitationsschrift, 1854, 1867).



Riemann’s starting point:

Let bg, a1, by, . . . satisfy:

for each x, lim,_,(an,sin nx + b, cos nx) = 0.

Now define:
F(x):= b —|—Za sin nx + by, cos nx
. 2 n n J
n>0
1 ~—dn . _bn
G(x) := Zb0x2 + Z n_z sin nx + =y Cos nx

n>0
F mostly is only a partial function, but G is defined

everywhere.



Symmetric derivatives

H(x + h) + H(x — h) — 2H(x)

2 T
02H(0 = ;
DlH(x) _ Limo H(x + h) + H(/): — h) — 2H(x)

Riemann proved, constructively, for each x in (—m, ),
1. if F(x) is defined, then F(x) = D*>G(x), and,

2. in any case, D'G(x) = 0.



Cantor: Uniqueness?

For every function F : [—m, 7] — R there exists at most one

infinite sequence of reals by, a1, by, . .. such that, for every x in
[_7T7 ﬂ-]v
F(x) = @—FZa sin nx + by, cos nx
2 n n .
n>0
that is:

for every infinite sequence of reals by, ag, by, . . .,
if, for every x in [—m, 7], % + > =0 ansinnx + b,cosnx =0,
then by = 0 and Vn > 0[a, = b, = 0].



The Cantor-Schwarz Lemma

Assume G : [a, b] — R is continuous, G(a) = G(b) = 0 and:
Vx € (a, b)[D?>G(x) J].
Then:

(i) Forall e >0, if 3x € [a, b][G(x) = ¢], then
Jz € (a, b)[D?G(z2) < —(bf—ea)z], and,

(i) if Vx € (a, b)[D?>G(x) = 0], then Vx € [a, b][G(x) = 0].

The intuitionistic proof uses the Fan Theorem.



Brouwer's Fan Theorem FT

B C {0,1}* is a barin C = {0,1}" :=Va € C3n[an € B.

If B is a bar in C, then some finite B’ C B is a bar
inC.

FT implies:
1. Als [0,1] € U (an, by), dan IN[[0,1] € U (an, bs)]-

neN n<N

2. If f:[0,1] — R is continuous at every point, then f is
continuous uniformly on [0, 1] and Ran(f) has a least

upper bound.



The proof by Schwarz

Assume: x € [a, b] and G(x) =¢ > 0.
Define H : [a, b] — R:

Hiy) = 6(y) < },ﬁ(ﬁ)! 2

Note: H(x) > 3e.

And: Yy € (a, b)[D2H(y) | A D2H(y) = D*G(y) + %]
Weierstrass: find yg such that Vy € [a, b][H(y) < H(yo)]
and: D?H(yg) <0, and: D2G(yo) < —(bi—ea)z-



An intuitionistic way out

For every p, define H, : [a, b] — R:

Ho(y) = H(y) + p)[;%

Note: for every p, for all y in (a, b):

D*H,(y) L A D*Hy(y) = D*H(y) = D*G(y) + %55
Construct p and yq in [a, b] such that

Vy € [a, b][H,(y) < Hy(yo)]-

The construction uses:

if f : [c,d] — R is continuous then sup. 4 |-



Cantor 1870: Uniqueness proven!

b
F(x) = 20 + Za,,sm nx + b, cos nx,
n>0
1 —a, . —b,
G(x) := Zbox2 + Z n—j sin nx + — 3 Cosnx
n>0
Assume: Vx € [—m, 7][F(x) = 0].
Riemann: Vx € [—, 7][D?G(x) = 0].
Cantor-Schwarz: G is linear.
Provisional assumption: The sequence by, a1, by, . .. is

bounded.
Then: uniform convergence of G and: by =0 and
Vn > 0[a, = b, = 0].



Kronecker: no need to assume

boundedness

Do not assume: The sequence by, a1, by, . .. is bounded.

Let x € [—m, 7] be given. Define, for every t in [—m, 7],
K(t)=F(x+t)+ F(x—1t)

K(t) := by + 22(3,, sin nx + b, cos nx) cos nt

>0
(sin(nx + nt) + sin(nx — nt) = 2sin nx cos nt,
cos(nx + nt) + cos(nx — nt) = 2 cos nx cos nt).
For every t in [—m, 7|, K(t) =0, so: by = 0 and, for every
n >0, a,sin nx + b, cos nx = 0. For all x in [—m, 7!
Conclude: by = 0 and Vn > 0[a, = b, = 0].



Cantor’s different way

Cantor proved: Riemann's starting point:
for all x, lim,_,(a, sin nx + b, cos nx) = 0.
implies:
lim, e @ = lim,—oo b, =0
and:
The sequence by, a1, by, . .. is bounded.

Cantor’s proof is (irreparably?) non-constructive.
However, one may obtain the desired conclusion from

Brouwer’s Continuity Principle.



Cantor goes on

X C [-m, 7] guarantees uniqueness :=

for every infinite sequence by, a1, by, . .. of reals,

if Vx € X[F(x) := 2+, ,ansin nx + b, cos nx = 0],
then by = 0 and, VYn > 0[a, = b, = 0].

Cantor 1871: Every co-finite X C [—7, 7| guarantees

uniqueness.

For: If G :[a,b] > R and a < ¢ < ben G is linear on [a, |
and on [c, b] and D*G(c) = 0, then G is linear on [a, b].



The co-derivative

H : (a, b) — R is locally linear on G C (a, b):=
Vx € G3n[H is linear on (x — -, x + 2;) € G.

If H is locally linear on (a, b), then H is linear on (a, b).

G C R is open :=Vx € GIn[(x — 5, x + ) C 4.
x € G := there exist n, y such that: [x — y| < 3 and
1
Vz[(|x — z] < > ANz#Hry) = z€G]:
all points in some neighbourhood of x are in G with one
clearly indicated possible exception.

G" . the (first) co-derivative (extension) of G.



Cantor's big step

Assume: G : [-m, 7] = R en Vx € [—, 7|[D*G(x) = 0].
Let G C (—m, ) be open.

If G is locally linear on G, then G is locally linear on G*.
Define: G(©) = G and, for each n, G("+1) = (G(M)+,

If G is locally linear on G, then G is locally linear on each G

[—7, 7] is swiftly full of G:= 3n[G(") = (—=,7)].

If [, 7] is swiftly full of G, G guarantees uniqueness.



Transfinite extension

Let G C [, 7] be open.
We define the collection Extg of the co-derivative extensions

of G inductively:

1. Ge Eth.
2. For all H in Extg, also H* € Extg.

3. for every infinite sequence H,, Hj, ... of elements of

Extg, also |J H, € Extg.
neN

4. Nothing more.



If Vx € [-m, 7][D*G(x) = 0] and G is locally linear on G, then

G is locally linear on every ‘H in Extg.
We define: [—m, 7] is eventually full of G:= (—m,7) € Extg.

If [—m, 7] is eventually full of G, then G guarantees uniqueness.



Countable and almost-countable

Assume: X CRand f: N — R.

f enumerates X:= Vx € Xdn[x = f(n)].

f almost-enumerates X:=

Vx € XVy € N3n[3n[|f(n) — x| < 551

If G is eventually full in [—7, 7], then [—m, 7]\ G is
almost-enumerable.

this follows from:

For every X in Extg, for all a,b such that —m < a< b <,
if [a, b] C X, then [a, b] \ G is almost-enumerable.



Locatedness

X C [—m, 7] is located:=
for every x in [—m, 7] one may determine

d(x, X), the distance from x to X

L Vy e X[d(x, X) < |y — x]].

2. Ve > 03y € X[|ly — x| < d(x,X) +¢].
Assume: G C R is open.

If 7 :=[—m, 7]\ G is located, then F may be covered by a

fan and every open cover of F has as a finite subcover.



Bar induction

Assume: B, C C N*,

Bis a bar in N'=N" := Vo € N3n[an € B.

B is monotone := Vc[c € B — Vm[c x (m) € B]].
C is inductive:= Vc[Vm[c x (m) € C] — c € C].
BIMZ

If B is monotone and a bar in N, and B C C, and
C is inductive, then () € C.



A reversal

Assume: G C (—m, ) is open.

If [=m, 7|\ G is located and almost-enumerable,
then G is eventually full in [—m,r]:
(—m,m) € Extg.

Why?

Let f be an almost-enumeration of F := [—m, 7] \ G.

1
1
VAVx € F3n[|f(n) — x| < —27(,7)]

Vy € NINVx € Fan < N[|f(n) — x| < W]



c € B:=Vx € F3n < length(c)[|f(n) — x| < 57].

B is a monotone bar in N

He = {x € (—m,m)|¥n < length(c)[|f(n) — x| > 5]}
c € C:=3X € Extg[H C X].

If c € B, then H. = (). Conclude: B C C.

Assume: ¢ € N* and: Vm[c x (m) € C].

Find n := length(c).

Find Xy, X1, ... in Extg such that, for each m,
Hesmy = He N{x € (—=m,m)||x — f(n)| > 55} C X
Observe: H. C (J &,)".

peN
Conclude: C is inductive.

Conclude: () € C and: (—7,7) € Extg.



Cantor-Schwarz-Bernstein-Young
(1908/1909)

Assume: X C (a, b) is co-enumerable:
If : N — (a,b)¥x € (a, b)[Vn[f(n) # x] — x € X].

Let G : [a, b] — R be continuous and G(a) = G(b) =0 and
Vx € X[D?G(x) }] and: Vx € (a, b)[D*G(x) = 0].
Then:

(i) For every e > 0, if 3x € [a, b][G(x) = €], then
Jz € X[D?G(2) < —¢2 3)2] and,

(i) if Vx € X[D?*G(x) = 0], then Vx € [a, b][G(x) = 0].



The proof

Assume: x € [a, b] and G(x) =¢ > 0.
Define H : [a, b] = R:

(b—y)ly —a)
(b—a)3

Hly)=G(y) —¢
For each p, define: H, : [a, b] = R:

y—a

Ho(y) = Hy) + p—.




Assume: po # p1 and Vx € [a, b][H,,(x) < H,,(0)] and
Vx € [a’ b][le(X) < le(}/l)]-

Note: H) (y0) =0en H, (y1) =0,

and: H'(yo) = =2 # — &5 = H'(n),

Conclude: yp # y1-



Cantor defeated

Bernstein/Young, intuitionistically:
Every co-enumerable X C [—m, 1| guarantees
uniqueness.

classically:

Every enumerable X C [—m, 7] is a set of

uniqueness.



