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B. Riemann

For which functions F : [−π, π]→ R do there exists reals

b0, a1, b1, . . . such that, for all x in [−π, π],

F (x) =
b0
2

+
∑
n>0

an sin nx + bn cos nx?

(Habilitationsschrift, 1854, 1867).



Riemann’s starting point:

Let b0, a1, b1, . . . satisfy:

for each x , limn→∞(an sin nx + bn cos nx) = 0.

Now define:

F (x) :=
b0
2

+
∑
n>0

an sin nx + bn cos nx ,

G (x) :=
1

4
b0x

2 +
∑
n>0

−an
n2

sin nx +
−bn
n2

cos nx

F mostly is only a partial function, but G is defined

everywhere.



Symmetric derivatives

D2H(x) = lim
h→0

H(x + h) + H(x − h)− 2H(x)

h2

D1H(x) = lim
h→0

H(x + h) + H(x − h)− 2H(x)

h

Riemann proved, constructively, for each x in (−π, π),

1. if F (x) is defined, then F (x) = D2G (x), and,

2. in any case, D1G (x) = 0.



Cantor: Uniqueness?

For every function F : [−π, π]→ R there exists at most one

infinite sequence of reals b0, a1, b1, . . . such that, for every x in

[−π, π],

F (x) =
b0
2

+
∑
n>0

an sin nx + bn cos nx .

that is:

for every infinite sequence of reals b0, a0, b1, . . .,

if, for every x in [−π, π], b0
2

+
∑

n>0 an sin nx + bn cos nx = 0,

then b0 = 0 and ∀n > 0[an = bn = 0].



The Cantor-Schwarz Lemma

Assume G : [a, b]→ R is continuous, G (a) = G (b) = 0 and:

∀x ∈ (a, b)[D2G (x) ↓].
Then:

(i) For all ε > 0, if ∃x ∈ [a, b][G (x) = ε], then

∃z ∈ (a, b)[D2G (z) ≤ − 2ε
(b−a)2 ], and,

(ii) if ∀x ∈ (a, b)[D2G (x) = 0], then ∀x ∈ [a, b][G (x) = 0].

The intuitionistic proof uses the Fan Theorem.



Brouwer’s Fan Theorem FT

B ⊆ {0, 1}∗ is a bar in C = {0, 1}N := ∀α ∈ C∃n[αn ∈ B].

If B is a bar in C, then some finite B ′ ⊆ B is a bar

in C.

FT implies:

1. Als [0, 1] ⊆
⋃
n∈N

(an, bn), dan ∃N[[0, 1] ⊆
⋃
n<N

(an, bn)].

2. If f : [0, 1]→ R is continuous at every point, then f is

continuous uniformly on [0, 1] and Ran(f ) has a least

upper bound.



The proof by Schwarz

Assume: x ∈ [a, b] and G (x) = ε > 0.

Define H : [a, b]→ R:

H(y) = G (y)− ε(b − y)(y − a)

(b − a)2
.

Note: H(x) ≥ 3
4
ε.

And: ∀y ∈ (a, b)[D2H(y) ↓ ∧ D2H(y) = D2G (y) + 2ε
(b−a)2 ].

Weierstrass: find y0 such that ∀y ∈ [a, b][H(y) ≤ H(y0)]

and: D2H(y0) ≤ 0, and: D2G (y0) ≤ − 2ε
(b−a)2 .



An intuitionistic way out

For every ρ, define Hρ : [a, b]→ R:

Hρ(y) = H(y) + ρ
y − a

b − a
.

Note: for every ρ, for all y in (a, b):

D2Hρ(y) ↓ ∧ D2Hρ(y) = D2H(y) = D2G (y) + 2ε
(b−a)2 .

Construct ρ and y0 in [a, b] such that

∀y ∈ [a, b][Hρ(y) ≤ Hρ(y0)].

The construction uses:

if f : [c , d ]→ R is continuous then sup[c,d ] ↓.



Cantor 1870: Uniqueness proven!

F (x) :=
b0
2

+
∑
n>0

an sin nx + bn cos nx ,

G (x) :=
1

4
b0x

2 +
∑
n>0

−an
n2

sin nx +
−bn
n2

cos nx

Assume: ∀x ∈ [−π, π][F (x) = 0].

Riemann: ∀x ∈ [−π, π][D2G (x) = 0].

Cantor-Schwarz: G is linear.

Provisional assumption: The sequence b0, a1, b1, . . . is

bounded.

Then: uniform convergence of G and: b0 = 0 and

∀n > 0[an = bn = 0].



Kronecker: no need to assume

boundedness
Do not assume: The sequence b0, a1, b1, . . . is bounded.

Let x ∈ [−π, π] be given. Define, for every t in [−π, π],

K (t) = F (x + t) + F (x − t)

K (t) := b0 + 2
∑
n>0

(an sin nx + bn cos nx) cos nt

(sin(nx + nt) + sin(nx − nt) = 2 sin nx cos nt,

cos(nx + nt) + cos(nx − nt) = 2 cos nx cos nt).

For every t in [−π, π], K (t) = 0, so: b0 = 0 and, for every

n > 0, an sin nx + bn cos nx = 0. For all x in [−π, π]!

Conclude: b0 = 0 and ∀n > 0[an = bn = 0].



Cantor’s different way
Cantor proved: Riemann’s starting point:

for all x , limn→∞(an sin nx + bn cos nx) = 0.

implies:

limn→∞ an = limn→∞ bn = 0

and:

The sequence b0, a1, b1, . . . is bounded.

Cantor’s proof is (irreparably?) non-constructive.

However, one may obtain the desired conclusion from

Brouwer’s Continuity Principle.



Cantor goes on

X ⊆ [−π, π] guarantees uniqueness :=

for every infinite sequence b0, a1, b1, . . . of reals,

if ∀x ∈ X [F (x) := b0
2

+
∑

n>0 an sin nx + bn cos nx = 0],

then b0 = 0 and, ∀n > 0[an = bn = 0].

Cantor 1871: Every co-finite X ⊆ [−π, π] guarantees

uniqueness.

For: If G : [a, b]→ R and a < c < b en G is linear on [a, c]

and on [c , b] and D1G (c) = 0, then G is linear on [a, b].



The co-derivative

H : (a, b)→ R is locally linear on G ⊆ (a, b):=

∀x ∈ G∃n[H is linear on (x − 1
2n
, x + 1

2n
) ⊆ G].

If H is locally linear on (a, b), then H is linear on (a, b).

G ⊆ R is open := ∀x ∈ G∃n[(x − 1
2n
, x + 1

2n
) ⊆ G].

x ∈ G+ := there exist n, y such that: |x − y | < 1
2n

and

∀z [(|x − z | < 1

2n
∧ z #R y)→ z ∈ G] :

all points in some neighbourhood of x are in G with one

clearly indicated possible exception.

G+ : the (first) co-derivative (extension) of G.



Cantor’s big step

Assume: G : [−π, π]→ R en ∀x ∈ [−π, π][D1G (x) = 0].

Let G ⊆ (−π, π) be open.

If G is locally linear on G, then G is locally linear on G+.

Define: G(0) = G and, for each n, G(n+1) = (G(n))+.

If G is locally linear on G, then G is locally linear on each G(n).

[−π, π] is swiftly full of G:= ∃n[G(n) = (−π, π)].

If [−π, π] is swiftly full of G, G guarantees uniqueness.



Transfinite extension

Let G ⊆ [−π, π] be open.

We define the collection ExtG of the co-derivative extensions

of G inductively:

1. G ∈ ExtG.

2. For all H in ExtG, also H+ ∈ ExtG.

3. for every infinite sequence Ho ,H1, . . . of elements of

ExtG, also
⋃
n∈N
Hn ∈ ExtG.

4. Nothing more.



If ∀x ∈ [−π, π][D1G (x) = 0] and G is locally linear on G, then

G is locally linear on every H in ExtG.

We define: [−π, π] is eventually full of G:= (−π, π) ∈ ExtG.

If [−π, π] is eventually full of G, then G guarantees uniqueness.



Countable and almost-countable

Assume: X ⊆ R and f : N→ R.

f enumerates X := ∀x ∈ X∃n[x = f (n)].

f almost-enumerates X :=

∀x ∈ X∀γ ∈ N∃n[∃n[|f (n)− x | < 1
2γ(n)

].

If G is eventually full in [−π, π], then [−π, π] \ G is

almost-enumerable.

this follows from:

For every X in ExtG, for all a, b such that −π ≤ a < b ≤ π,

if [a, b] ⊆ X , then [a, b] \ G is almost-enumerable.



Locatedness

X ⊆ [−π, π] is located:=

for every x in [−π, π] one may determine

d(x ,X ), the distance from x to X :

1. ∀y ∈ X [d(x ,X ) ≤ |y − x |].

2. ∀ε > 0∃y ∈ X [|y − x | < d(x ,X ) + ε].

Assume: G ⊆ R is open.

If F := [−π, π] \ G is located, then F may be covered by a

fan and every open cover of F has as a finite subcover.



Bar induction

Assume: B ,C ⊆ N∗.

B is a bar in N = NN := ∀α ∈ N∃n[αn ∈ B].

B is monotone := ∀c[c ∈ B → ∀m[c ∗ (m) ∈ B]].

C is inductive:= ∀c[∀m[c ∗ (m) ∈ C ]→ c ∈ C ].

BIM :

If B is monotone and a bar in N , and B ⊆ C, and

C is inductive, then ( ) ∈ C.



A reversal

Assume: G ⊆ (−π, π) is open.

If [−π, π] \ G is located and almost-enumerable,

then G is eventually full in [−π, π]:

(−π, π) ∈ ExtG.

Why?

Let f be an almost-enumeration of F := [−π, π] \ G.

∀x ∈ F∀γ∃n[|f (n)− x | ≤ 1

2γ(n)
]

∀γ∀x ∈ F∃n[|f (n)− x | ≤ 1

2γ(n)
]

∀γ ∈ N∃N∀x ∈ F∃n ≤ N[|f (n)− x | ≤ 1

2γ(n)
].



c ∈ B := ∀x ∈ F∃n < length(c)[|f (n)− x | ≤ 1
2c(n)

].

B is a monotone bar in N .

Hc := {x ∈ (−π, π)|∀n < length(c)[|f (n)− x | > 1
2c(n)

]}.
c ∈ C := ∃X ∈ ExtG[Hc ⊆ X ].

If c ∈ B , then Hc = ∅. Conclude: B ⊆ C .

Assume: c ∈ N∗ and: ∀m[c ∗ (m) ∈ C ].

Find n := length(c).

Find X0,X1, . . . in ExtG such that, for each m,

Hc∗(m) = Hc ∩ {x ∈ (−π, π)||x − f (n)| > 1
2m
} ⊆ Xm.

Observe: Hc ⊆ (
⋃
p∈N
Xp)+.

Conclude: C is inductive.

Conclude: ( ) ∈ C and: (−π, π) ∈ ExtG.



Cantor-Schwarz-Bernstein-Young

(1908/1909)
Assume: X ⊆ (a, b) is co-enumerable:

∃f : N→ (a, b)∀x ∈ (a, b)[∀n[f (n) # x ]→ x ∈ X ].

Let G : [a, b]→ R be continuous and G (a) = G (b) = 0 and

∀x ∈ X [D2G (x) ↓] and: ∀x ∈ (a, b)[D1G (x) = 0].

Then:

(i) For every ε > 0, if ∃x ∈ [a, b][G (x) = ε], then

∃z ∈ X [D2G (z) ≤ − 2ε
(b−a)2 ], and,

(ii) if ∀x ∈ X [D2G (x) = 0], then ∀x ∈ [a, b][G (x) = 0].



The proof

Assume: x ∈ [a, b] and G (x) = ε > 0.

Define H : [a, b]→ R:

H(y) = G (y)− ε(b − y)(y − a)

(b − a)2
.

For each ρ, define: Hρ : [a, b]→ R:

Hρ(y) = H(y) + ρ
y − a

b − a
.



Assume: ρ0 # ρ1 and ∀x ∈ [a, b][Hρ0(x) ≤ Hρ0(y0)] and

∀x ∈ [a, b][Hρ1(x) ≤ Hρ1(y1)].

Note: H ′ρ0(y0) = 0 en H ′ρ1(y1) = 0,

and: H ′(y0) = − ρ0
b−a # − ρ1

b−a = H ′(y1),

Conclude: y0 # y1.



Cantor defeated

Bernstein/Young, intuitionistically:

Every co-enumerable X ⊆ [−π, π] guarantees

uniqueness.

classically:

Every enumerable X ⊆ [−π, π] is a set of

uniqueness.


