Cantor's uniqueness theorems and countable closed sets

Wim Veldman Radboud University Nijmegen

Second Workshop on Mathematical Logic and its Applications Kanazawa, 5-9 March 2018

B. Riemann

For which functions $F : [-\pi, \pi] \to \mathcal{R}$ do there exists reals b_0, a_1, b_1, \ldots such that, for all x in $[-\pi, \pi]$,

$$F(x) = \frac{b_0}{2} + \sum_{n>0} a_n \sin nx + b_n \cos nx?$$

(Habilitationsschrift, 1854, 1867).

Riemann's starting point:

Let b_0, a_1, b_1, \ldots satisfy:

for each x, $\lim_{n\to\infty} (a_n \sin nx + b_n \cos nx) = 0$.

Now define:

$$F(x) := \frac{b_0}{2} + \sum_{n>0} a_n \sin nx + b_n \cos nx,$$

$$G(x) := \frac{1}{4}b_0 x^2 + \sum_{n>0} \frac{-a_n}{n^2} \sin nx + \frac{-b_n}{n^2} \cos nx$$

F mostly is only a *partial* function, but G is defined everywhere.

Symmetric derivatives

$$D^{2}H(x) = \lim_{h \to 0} \frac{H(x+h) + H(x-h) - 2H(x)}{h^{2}}$$
$$D^{1}H(x) = \lim_{h \to 0} \frac{H(x+h) + H(x-h) - 2H(x)}{h}$$

Riemann proved, **constructively**, for each x in $(-\pi, \pi)$,

1. if F(x) is defined, then $F(x) = D^2G(x)$, and,

2. in any case,
$$D^1G(x) = 0$$
.

Cantor: Uniqueness?

For every function $F : [-\pi, \pi] \to \mathcal{R}$ there exists at most one infinite sequence of reals b_0, a_1, b_1, \ldots such that, for every x in $[-\pi, \pi]$,

$$F(x) = \frac{b_0}{2} + \sum_{n>0} a_n \sin nx + b_n \cos nx.$$

that is:

for every infinite sequence of reals b_0, a_0, b_1, \ldots ,

if, for every x in $[-\pi, \pi]$, $\frac{b_0}{2} + \sum_{n>0} a_n \sin nx + b_n \cos nx = 0$, then $b_0 = 0$ and $\forall n > 0[a_n = b_n = 0]$.

The Cantor-Schwarz Lemma

Assume $G : [a, b] \to \mathcal{R}$ is continuous, G(a) = G(b) = 0 and: $\forall x \in (a, b)[D^2G(x) \downarrow].$ Then:

(i) For all
$$\varepsilon > 0$$
, if $\exists x \in [a, b][G(x) = \varepsilon]$, then
 $\exists z \in (a, b)[D^2G(z) \le -\frac{2\varepsilon}{(b-a)^2}]$, and,

(ii) if $\forall x \in (a, b)[D^2G(x) = 0]$, then $\forall x \in [a, b][G(x) = 0]$.

The intuitionistic proof uses the Fan Theorem.

Brouwer's Fan Theorem **FT**

 $B \subseteq \{0,1\}^*$ is a bar in $\mathcal{C} = \{0,1\}^{\mathbb{N}} := \forall \alpha \in \mathcal{C} \exists n[\overline{\alpha}n \in B]$. If B is a bar in C, then some finite $B' \subseteq B$ is a bar in C.

FT implies:

1. Als
$$[0,1] \subseteq \bigcup_{n \in \mathbb{N}} (a_n, b_n)$$
, dan $\exists N [[0,1] \subseteq \bigcup_{n < N} (a_n, b_n)]$.

If f : [0,1] → R is continuous at every point, then f is continuous uniformly on [0,1] and Ran(f) has a least upper bound.

The proof by Schwarz

Assume: $x \in [a, b]$ and $G(x) = \varepsilon > 0$. Define $H : [a, b] \rightarrow \mathcal{R}$:

$$H(y) = G(y) - \varepsilon \frac{(b-y)(y-a)}{(b-a)^2}.$$

Note: $H(x) \ge \frac{3}{4}\varepsilon$. And: $\forall y \in (a, b)[D^2H(y) \downarrow \land D^2H(y) = D^2G(y) + \frac{2\varepsilon}{(b-a)^2}]$. Weierstrass: find \mathbf{y}_0 such that $\forall y \in [a, b][H(y) \le H(\mathbf{y}_0)]$ and: $D^2H(\mathbf{y}_0) \le 0$, and: $D^2G(\mathbf{y}_0) \le -\frac{2\varepsilon}{(b-a)^2}$.

An intuitionistic way out

For every ρ , define $H_{\rho} : [a, b] \rightarrow \mathcal{R}$:

$$H_{
ho}(y) = H(y) +
ho rac{y-a}{b-a}$$

Note: for every ρ , for all y in (a, b): $D^2 H_{\rho}(y) \downarrow \wedge D^2 H_{\rho}(y) = D^2 H(y) = D^2 G(y) + \frac{2\varepsilon}{(b-a)^2}$. Construct ρ and \mathbf{y}_0 in [a, b] such that $\forall y \in [a, b][H_{\rho}(y) \leq H_{\rho}(\mathbf{y}_0)]$.

The construction uses:

if $f : [c, d] \rightarrow \mathcal{R}$ is continuous then $\sup_{[c,d]} \downarrow$.

Cantor 1870: Uniqueness proven!

$$F(x) := \frac{b_0}{2} + \sum_{n>0} a_n \sin nx + b_n \cos nx,$$
$$G(x) := \frac{1}{4} b_0 x^2 + \sum_{n>0} \frac{-a_n}{n^2} \sin nx + \frac{-b_n}{n^2} \cos nx$$
Assume: $\forall x \in [-\pi, \pi] [F(x) = 0].$ Riemann: $\forall x \in [-\pi, \pi] [D^2 G(x) = 0].$

Cantor-Schwarz: G is linear.

Provisional assumption: The sequence b_0, a_1, b_1, \ldots is **bounded**.

Then: **uniform convergence** of *G* and: $b_0 = 0$ and $\forall n > 0[a_n = b_n = 0]$.

Kronecker: no need to assume

boundedness

Do not assume: The sequence b_0, a_1, b_1, \ldots is bounded. Let $x \in [-\pi, \pi]$ be given. Define, for every t in $[-\pi, \pi]$,

$$K(t) = F(x+t) + F(x-t)$$

 $K(t) := b_0 + 2\sum_{n>0} (a_n \sin nx + b_n \cos nx) \cos nt$

 $(\sin(nx + nt) + \sin(nx - nt)) = 2 \sin nx \cos nt,$ $\cos(nx + nt) + \cos(nx - nt) = 2 \cos nx \cos nt).$ For every t in $[-\pi, \pi]$, K(t) = 0, so: $b_0 = 0$ and, for every n > 0, $a_n \sin nx + b_n \cos nx = 0$. For all x in $[-\pi, \pi]!$ Conclude: $b_0 = 0$ and $\forall n > 0[a_n = b_n = 0].$

Cantor's different way

Cantor proved: Riemann's starting point:

for all x, $\lim_{n\to\infty} (a_n \sin nx + b_n \cos nx) = 0$.

implies:

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=0$$

and:

The sequence b_0, a_1, b_1, \ldots is bounded.

Cantor's proof is (irreparably?) non-constructive. However, one may obtain the desired conclusion from Brouwer's Continuity Principle.

Cantor goes on

 $\mathcal{X} \subseteq [-\pi, \pi]$ guarantees uniqueness := for every infinite sequence b_0, a_1, b_1, \dots of reals, if $\forall x \in \mathcal{X}[F(x) := \frac{b_0}{2} + \sum_{n>0} a_n \sin nx + b_n \cos nx = 0]$, then $b_0 = 0$ and, $\forall n > 0[a_n = b_n = 0]$.

Cantor 1871: Every co-finite $\mathcal{X} \subseteq [-\pi, \pi]$ guarantees uniqueness.

For: If $G : [a, b] \to \mathcal{R}$ and a < c < b en G is linear on [a, c]and on [c, b] and $D^1G(c) = 0$, then G is linear on [a, b].

The co-derivative

 $H: (a, b) \to \mathcal{R}$ is locally linear on $\mathcal{G} \subseteq (a, b) :=$ $\forall x \in \mathcal{G} \exists n[H \text{ is linear on } (x - \frac{1}{2n}, x + \frac{1}{2^n}) \subseteq \mathcal{G}].$ If *H* is locally linear on (a, b), then *H* is linear on (a, b).

$$\mathcal{G} \subseteq \mathcal{R}$$
 is **open** := $\forall x \in \mathcal{G} \exists n[(x - \frac{1}{2^n}, x + \frac{1}{2^n}) \subseteq \mathcal{G}].$
 $x \in \mathcal{G}^+$:= there exist n, y such that: $|x - y| < \frac{1}{2^n}$ and

$$\forall z[(|x-z| < \frac{1}{2^n} \land z \#_{\mathcal{R}} y) \rightarrow z \in \mathcal{G}]:$$

all points in some neighbourhood of x are in \mathcal{G} with one clearly indicated possible exception.

 \mathcal{G}^+ : the (first) co-derivative (extension) of \mathcal{G} .

Cantor's big step

Assume: $G : [-\pi, \pi] \to \mathcal{R}$ en $\forall x \in [-\pi, \pi][D^1G(x) = 0]$. Let $\mathcal{G} \subseteq (-\pi, \pi)$ be open. If G is locally linear on \mathcal{G} , then G is locally linear on \mathcal{G}^+ .

Define: $\mathcal{G}^{(0)}=\mathcal{G}$ and, for each *n*, $\mathcal{G}^{(n+1)}=(\mathcal{G}^{(n)})^+.$

If G is locally linear on \mathcal{G} , then G is locally linear on each $\mathcal{G}^{(n)}$.

 $[-\pi, \pi]$ is swiftly full of $\mathcal{G} := \exists n[\mathcal{G}^{(n)} = (-\pi, \pi)].$ If $[-\pi, \pi]$ is swiftly full of \mathcal{G} , \mathcal{G} guarantees uniqueness.

Transfinite extension

Let $\mathcal{G} \subseteq [-\pi,\pi]$ be open.

We define the collection $Ext_{\mathcal{G}}$ of the co-derivative extensions of \mathcal{G} inductively:

1. $\mathcal{G} \in Ext_{\mathcal{G}}$.

- 2. For all \mathcal{H} in $Ext_{\mathcal{G}}$, also $\mathcal{H}^+ \in Ext_{\mathcal{G}}$.
- for every infinite sequence H_o, H₁,... of elements of Ext_G, also _{n∈ℕ} H_n ∈ Ext_G.
- 4. Nothing more.

If $\forall x \in [-\pi, \pi][D^1G(x) = 0]$ and G is locally linear on \mathcal{G} , then G is locally linear on every \mathcal{H} in $Ext_{\mathcal{G}}$.

We define: $[-\pi, \pi]$ is eventually full of $\mathcal{G} := (-\pi, \pi) \in Ext_{\mathcal{G}}$.

If $[-\pi,\pi]$ is eventually full of \mathcal{G} , then \mathcal{G} guarantees uniqueness.

Countable and almost-countable

Assume: $\mathcal{X} \subseteq \mathcal{R}$ and $f : \mathbb{N} \to \mathcal{R}$.

f enumerates $\mathcal{X} := \forall x \in \mathcal{X} \exists n[x = f(n)].$

f almost-enumerates $\mathcal{X} := \forall x \in \mathcal{X} \forall \gamma \in \mathcal{N} \exists n [\exists n [|f(n) - x| < \frac{1}{2^{\gamma(n)}}].$ If \mathcal{G} is eventually full in $[-\pi, \pi]$, then $[-\pi, \pi] \setminus \mathcal{G}$ is almost-enumerable.

this follows from:

For every \mathcal{X} in $Ext_{\mathcal{G}}$, for all a, b such that $-\pi \leq a < b \leq \pi$, if $[a, b] \subseteq \mathcal{X}$, then $[a, b] \setminus \mathcal{G}$ is almost-enumerable.

Locatedness

 $\mathcal{X} \subseteq [-\pi, \pi]$ is **located**:= for every x in $[-\pi, \pi]$ one may determine $d(x, \mathcal{X})$, the distance from x to \mathcal{X} :

1.
$$\forall y \in \mathcal{X}[d(x, \mathcal{X}) \leq |y - x|].$$

2. $\forall \varepsilon > 0 \exists y \in \mathcal{X}[|y - x| < d(x, \mathcal{X}) + \varepsilon]$

Assume: $\mathcal{G} \subseteq \mathcal{R}$ is open.

If $\mathcal{F} := [-\pi, \pi] \setminus \mathcal{G}$ is located, then \mathcal{F} may be covered by a fan and every open cover of \mathcal{F} has as a finite subcover.

Bar induction

Assume: $B, C \subseteq \mathbb{N}^*$.

- *B* is a bar in $\mathcal{N} = \mathbb{N}^{\mathbb{N}} := \forall \alpha \in \mathcal{N} \exists n[\overline{\alpha}n \in B].$
- *B* is **monotone** := $\forall c[c \in B \rightarrow \forall m[c * (m) \in B]]$.
- *C* is **inductive**:= $\forall c [\forall m[c * (m) \in C] \rightarrow c \in C]$.

 \mathbf{BI}_M :

If B is monotone and a bar in N, and $B \subseteq C$, and C is inductive, then () $\in C$.

A reversal

Assume: $\mathcal{G} \subseteq (-\pi, \pi)$ is open. If $[-\pi, \pi] \setminus \mathcal{G}$ is located and almost-enumerable, then \mathcal{G} is eventually full in $[-\pi, \pi]$: $(-\pi, \pi) \in Ext_{\mathcal{G}}$.

Why?

Let f be an almost-enumeration of $\mathcal{F} := [-\pi, \pi] \setminus \mathcal{G}$.

$$egin{aligned} orall x \in \mathcal{F} orall \gamma \exists n [|f(n) - x| \leq rac{1}{2^{\gamma(n)}}] \ &orall \gamma orall x \in \mathcal{F} \exists n [|f(n) - x| \leq rac{1}{2^{\gamma(n)}}] \ &orall \gamma \in \mathcal{N} \exists N orall x \in \mathcal{F} \exists n \leq N [|f(n) - x| \leq rac{1}{2^{\gamma(n)}}]. \end{aligned}$$

 $c \in B := \forall x \in \mathcal{F} \exists n < length(c)[|f(n) - x| \leq \frac{1}{2^{c(n)}}].$ B is a monotone bar in \mathcal{N} .

$$\begin{aligned} \mathcal{H}_c &:= \{ x \in (-\pi,\pi) | \forall n < length(c)[|f(n) - x| > \frac{1}{2^{c(n)}}] \}. \\ c &\in \mathcal{C} := \exists \mathcal{X} \in Ext_{\mathcal{G}}[\mathcal{H}_c \subseteq \mathcal{X}]. \end{aligned}$$

If $c \in B$, then $\mathcal{H}_c = \emptyset$. Conclude: $B \subseteq C$.

Assume: $c \in \mathbb{N}^*$ and: $\forall m[c * (m) \in C]$. Find n := length(c). Find $\mathcal{X}_0, \mathcal{X}_1, \ldots$ in $Ext_{\mathcal{G}}$ such that, for each m, $\mathcal{H}_{c*(m)} = \mathcal{H}_c \cap \{x \in (-\pi, \pi) | |x - f(n)| > \frac{1}{2^m}\} \subseteq \mathcal{X}_m$. Observe: $\mathcal{H}_c \subseteq (\bigcup_{p \in \mathbb{N}} \mathcal{X}_p)^+$. Conclude: C is inductive.

Conclude: () $\in C$ and: $(-\pi, \pi) \in Ext_{\mathcal{G}}$.

Cantor-Schwarz-Bernstein-Young (1908/1909)

Assume: $\mathcal{X} \subseteq (a, b)$ is **co-enumerable**:

$$\exists f: \mathbb{N} \to (a, b) \forall x \in (a, b) [\forall n[f(n) \# x] \to x \in \mathcal{X}].$$

Let $G : [a, b] \to \mathcal{R}$ be continuous and G(a) = G(b) = 0 and $\forall x \in \mathcal{X}[D^2G(x) \downarrow]$ and: $\forall x \in (a, b)[D^1G(x) = 0]$. Then:

The proof

Assume: $x \in [a, b]$ and $G(x) = \varepsilon > 0$. Define $H : [a, b] \rightarrow \mathcal{R}$:

$$H(y) = G(y) - \varepsilon \frac{(b-y)(y-a)}{(b-a)^2}.$$

For each ρ , define: $H_{\rho} : [a, b] \to \mathcal{R}$:

$$H_{\rho}(y) = H(y) + \rho \frac{y-a}{b-a}.$$

Assume: $\rho_0 \# \rho_1$ and $\forall x \in [a, b][H_{\rho_0}(x) \le H_{\rho_0}(y_0)]$ and $\forall x \in [a, b][H_{\rho_1}(x) \le H_{\rho_1}(y_1)].$ Note: $H'_{\rho_0}(y_0) = 0$ en $H'_{\rho_1}(y_1) = 0$, and: $H'(y_0) = -\frac{\rho_0}{b-a} \# - \frac{\rho_1}{b-a} = H'(y_1)$, Conclude: $y_0 \# y_1$.

Cantor defeated

Bernstein/Young, *intuitionistically*:

Every co-enumerable $\mathcal{X} \subseteq [-\pi, \pi]$ guarantees uniqueness.

classically:

Every enumerable $\mathcal{X} \subseteq [-\pi, \pi]$ is a set of uniqueness.