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Modal logic in the theory of programming languages

Some studies [Kobayashi ’97][Benton+ ’98][Pfenning+ ’01][Kimura+ ’11]

discovered that S4 corresponds to various typed λ-calculi for
“meta-programming”

In the logical foundation, �-modality plays an essential role:

�A means the set of programs which “encode” programs of
type A

(this is similar to the intuition in Logic of Proof, etc:
�A means the proposition of a “proof” of A)
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Problem from a practical viewpoint

All the previous studies only consider natural-deduction-style

λ-calculi, and they use the “one-step” substitution as usual:

(λx .M)N  M[x := N]

However, the operation is too rich from a practical viewpoint

Natural-deduction-style λ-calculus is not enough to capture
the structure of computation
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This talk

Aim of this talk� �
To create another computational model for modal logic S4,
in terms of sequent calculus� �

To do this, a sequent calculus and its corresponding calculus for
intuitionistic S4 are proposed

1 proof-theoretically based on:

a modal sequent calculus and the G3-style system
[Troelstra&Schwichtenberg ’96]
a higher-arity modal natural deduction [Pfenning&Davies ’01]

2 type-theoretically based on:

the higher-arity modal λ-calculus [Pfenning&Davies ’01]
the Curry–Howard correspondence for a G3-style sequent calc.
[Ohori ’99]
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Higher-arity Sequent Calculus for intuitionistic S4

We propose a “higher-arity” sequent calc. for (∧,∨,⊃,�)-fragment
of intuitionistic S4, HLJS4, based on [Troelstra&Schwichtenberg ’96]

Definition (Formula)

A,B ::= p | A ∧ B | A ∨ B | A ⊃ B | �A

Definition (Higher-arity judgment [Pfenning+ ’01])

A judgment is defined by the following higher-arity form:

∆; Γ ` A

which intuitively means (
∧
�∆) ∧ (

∧
Γ) ⊃ A
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Inference rules of HLJS4

Ax∅;A ` A
�Ax

A; ∅ ` A

∆; Γ ` A ∆; Γ ` B ∧R
∆; Γ ` A ∧ B

∆; Γ,Ai ` B
∧L

∆; Γ,A1 ∧ A2 ` B

∆; Γ ` Ai ∨R
∆; Γ ` A1 ∨ A2

∆; Γ,A ` C ∆; Γ,B ` C
∨L

∆; Γ,A ∨ B ` C

∆; Γ,A ` B
⊃ R

∆; Γ ` A ⊃ B

∆; Γ ` A ∆; Γ,B ` C
⊃ L

∆; Γ,A ⊃ B ` C

∆; ∅ ` A
�R

∆; ∅ ` �A
∆,A; Γ ` B

�L
∆; Γ,�A ` B

∆; Γ ` B
W

∆;Γ,A ` B
∆; Γ ` B

�W
∆,A; Γ ` B

∆; Γ,A,A ` B
C

∆; Γ,A ` B

∆,A,A; Γ ` B
�C

∆,A; Γ ` B

∆; Γ ` A ∆; Γ,A ` B
Cut

∆; Γ ` B
∆; ∅ ` A ∆,A; Γ ` B

�Cut
∆; Γ ` B
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Init rules of HLJS4

Init rule

Ax∅;A ` A
�Ax

A; ∅ ` A

Ax∅;A ` A

Intuition of Ax� �
�Ax�A ⊃ A� �
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Logical rules of HLJS4

Logical rule
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Structural rules of HLJS4

Structural rule

∆; Γ ` B
W

∆;Γ,A ` B
∆; Γ ` B

�W
∆,A; Γ ` B

∆; Γ,A,A ` B
C

∆; Γ,A ` B

∆,A,A; Γ ` B
�C

∆,A; Γ ` B

Cut rule

∆; Γ ` A ∆; Γ,A ` B
Cut

∆; Γ ` B
∆; ∅ ` A ∆,A; Γ ` B

�Cut
∆; Γ ` B
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On the cut-elimination procedure

While we can prove the cut-elimination theorem for HLJS4,
the proof by the mix-elimination is problematic; because ...

Π
∆; Γ ` A

Π′

∆′; Γ′,A,A ` B
C

∆′; Γ′,A ` B
Cut

∆,∆′; Γ, Γ′ ` B

=⇒
Π

∆; Γ ` A

∆′; Γ′,A,A ` B

Π′

∆′; Γ′,A,A ` B
Mix

∆,∆′; Γ, Γ′ ` B

In the elimination procedure,

it is “okay” if we consider the provability of the judgment; but

it is “not okay” if we consider the construction of the judgment
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G3-style sequent calculus

The G3-style [Kleene ’52][Dragalin ’88] is a style of formalization to
make a cut-free, or precisely, “structural-rule-free” system

The G3-style inference rules are defined in a somewhat tricky way
to derive the “height-preserving admissible” structural rules
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G3-style system for HLJS4, named G3-HLJS4

The G3-style inference rules are defined as follows:
Ax

∆; Γ,A ` A
�Ax

∆,A; Γ ` A

∆; Γ,A ` B
⊃ R

∆; Γ ` A ⊃ B

∆; Γ,A ⊃ B ` A ∆; Γ,A ⊃ B,B ` C
⊃ L

∆; Γ,A ⊃ B ` C

∆; Γ ` A ∆; Γ ` B ∧R
∆; Γ ` A ∧ B

∆; Γ,A ∧ B,A,B ` C
∧L

∆; Γ,A ∧ B ` C

∆; Γ ` Ai ∨R
∆; Γ ` A1 ∨ A2

∆; Γ,A ∨ B,A ` C ∆; Γ,A ∨ B,B ` C
∨L

∆; Γ,A ∨ B ` C

∆; ∅ ` A
�R

∆; Γ ` �A
∆,A; Γ,�A ` B

�L
∆; Γ,�A ` B
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From the original rules to the G3-style

Idea: all we have to do is to get “height-preserving” structural rules

Original HLJS4� �
Ax∅;A ` A

∆; Γ,Ai ` B
∧L

∆; Γ,A1 ∧ A2 ` B

∆,A; Γ ` B
�L

∆; Γ,�A ` B� �

=⇒

G3-style G3-HLJS4� �
Ax

∆; Γ,A ` A

∆; Γ,A ∧ B,A,B ` C
∧L

∆; Γ,A ∧ B ` C

∆,A; Γ,�A ` B
�L

∆; Γ,�A ` B� �
13 / 24



Desired properties

Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in G3-HLJS4:

∆; Γ ` B
W

∆; Γ,A ` B

∆; Γ ` B
�W

∆,A; Γ ` B

∆; Γ,A,A ` B
C

∆; Γ,A ` B

∆,A,A; Γ ` B
�C

∆,A; Γ ` B

Theorem (Equivalence)

The provability of HLJS4 and G3-HLJS4 + Cut is equivalent

Theorem (Cut-elimination)

The cut rules Cut and �Cut are admissible in G3-HLJS4
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Term assignment for the modal sequent calculus

We propose a term assignment system for the G3-HLJS4, λ
�
seq,

to get the computational model

As [Ohori ’99] did for a G3-style prop. int. sequent calc.,
we assign terms to G3-HLJS4 + Cut as follows:

Init/Right rules: assign λ-terms, as we do for N.D. system

Left/Cut rules: assign the so-called “let expression”

Good point: λ�seq does not use “meta-level” substitution!
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Term assignment for init/right rules

Assign the modal λ-term [Pfenning+ ’01] to the init/right rules:

Ax
∆; Γ, x : A ` x : A

�Ax
∆, u : A; Γ ` u : A

∆; Γ ` M : A ∆; Γ ` N : B ∧R
∆; Γ ` 〈M,N〉 : A ∧ B

∆; Γ, x : A ` M : B
⊃ R

∆; Γ ` λx : A.M : A ⊃ B

∆; ∅ ` M : A
�R

∆; Γ ` boxM : �A
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Term assignment for left rule of conjunction

Assign “let-expression” to the left conjunction rule:

∆; Γ, x : A ∧ B, y : A, z : B ` M : C
∧L

∆; Γ, x : A ∧ B ` let 〈y , z〉 = x inM : C

The reduction intuitively proceeeds, e.g., as:

(let 〈y , z〉 = 〈N , L〉 inM) M[y := N , z := L]
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Term assignment for the other left rules

The rules for the other left rules are defined similarly:

∆; Γ, x : A ⊃ B ` M : A ∆; Γ, x : A ⊃ B, y : B ` N : C
⊃ L

∆; Γ, x : A ⊃ B ` let y = x M inN : C

∆, u : A; Γ, x : �A ` M : B
�L

∆; Γ, x : �A ` let box u = x inM : B

18 / 24



Term assignment for cut rules

The term assignment for cut rules are defined as a “composition”
of two constructions, again by using let-expressions:

∆; Γ ` M : A ∆; Γ, x : A ` N : B
Cut

∆; Γ ` let x = M inN : B

∆; ∅ ` M : A ∆, u : A; Γ ` N : B
�Cut

∆; Γ ` let u = M inN : B
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Cut-elimination in terms of λ�seq

Let us consider the cut-elimination for conjunction:

` M : A ` N : B ∧R` 〈M,N〉 : A ∧ B

x : A ∧ B, y : A, z : B ` L : C
∧L

x : A ∧ B ` let 〈y , z〉 = x in L : C
Cut` let x = 〈M,N〉 in let 〈y , z〉 = x in L : C

To eliminate cuts, all we have to do is to compute:

(let x = 〈M,N〉 in let 〈y , z〉 = x in L)
 L[y := M, z := N, x := 〈M,N〉]

but we do not want to use “meta-level” substitution

Fortunatelly, the (local) cut-elimination step defined in the G3-style
is exactly what we want!

20 / 24



Cut-elimination in terms of λ�seq

Let us consider the cut-elimination for conjunction:

` M : A ` N : B ∧R` 〈M,N〉 : A ∧ B

x : A ∧ B, y : A, z : B ` L : C
∧L

x : A ∧ B ` let 〈y , z〉 = x in L : C
Cut` let x = 〈M,N〉 in let 〈y , z〉 = x in L : C

To eliminate cuts, all we have to do is to compute:

(let x = 〈M,N〉 in let 〈y , z〉 = x in L)
 L[y := M, z := N, x := 〈M,N〉]

but we do not want to use “meta-level” substitution

Fortunatelly, the (local) cut-elimination step defined in the G3-style
is exactly what we want!

20 / 24



Cut-elimination in terms of λ�seq

Let us consider the cut-elimination for conjunction:

` M : A ` N : B ∧R` 〈M,N〉 : A ∧ B

x : A ∧ B, y : A, z : B ` L : C
∧L

x : A ∧ B ` let 〈y , z〉 = x in L : C
Cut` let x = 〈M,N〉 in let 〈y , z〉 = x in L : C

To eliminate cuts, all we have to do is to compute:

(let x = 〈M,N〉 in let 〈y , z〉 = x in L)
 L[y := M, z := N, x := 〈M,N〉]

but we do not want to use “meta-level” substitution

Fortunatelly, the (local) cut-elimination step defined in the G3-style
is exactly what we want!

20 / 24



Local cut-elimination as program-simplification

(A part of) translation rules are obtained as follows:

Optimization (let x = M in x) M

(let x = M in y) y

Flattening

(letw = (let 〈y , z〉 = x inM) inN) (let 〈y , z〉 = x in letw = M inN)

(let y = (let box u = x inM) inN) (let box u = x in let y = M inN)

Decomposition

(let x = 〈M,N〉 in let 〈y , z〉 = x in L) (let y = M in let z = N in let x = 〈y , z〉 in L)
(let x = boxM in let box u = x inN) (let u = M in let x = box u inN)

These translation corresponds to “A-normal form compilation” in
the theory of programming languages
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Properties of λ�seq and the cut-elimination theorem

Theorem (Subject reduction)

If ∆; Γ ` M : A and M  M ′, then ∆; Γ ` M ′ : A

Theorem (Strong normalization)

Every typable term is strongly normalizing

Corollary (Cut-elimination theorem)

λ�seq enjoys the cut-elimination theorem, which also yields that
every typable term can be reduced to the unique normal form
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Embedding from modal calculus

The following tells us that λ�seq can be used as a basis of model for
the existing theory:

Theorem (Embedding from modal typed λ-calculus)

The modal λ-calc. λ� [Pfenning+ ’01] can be embeded into λ�seq:

If ∆; Γ ` M : A in λ�, then ∆; Γ ` JMK : A in λ�seq

If M  M ′ in λ�, then JMK JM ′K in λ�seq

where J−K means the translation mapping from λ� to λ�seq
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Conclusion and future work

Conclusion

A cut-free higher-arity sequent calc. for intuitionistic S4:
HLJS4 and G3-HLJS4
(A cut-free higher-arity sequent calc. for classical S4:
HLKS4 and G3-HLKS4)
The corresponding term calculus for G3-HLJS4

Future work

The corresponding term calculus for the classical version,
following the work of λµ-calculus for modal logic [Kimura+ ’11]
(Ongoing work with Akira Yoshimizu):
Geometry of Interaction semantics for modal logic in terms of
MELL, following the work of GoI semantics for PCF [Mackie ’95]
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Cut-elimination (1)

let x = y inM  M[x := y ]

let x = u inM  M[x := u]

let u = v inM  M[u := v ]

let x = M in x  M

let x = M in y  y

let u = M in x  x

let u = M in u  M

let u = M in v  v

let x = M in u  u

let z = (let y = x M inN) in L let y = x M in let z = N in L

letw = (let 〈y , z〉 = x inM) inN  let 〈y , z〉 = x in letw = M inN

letw = (case x of [y ]M or [z]N) in L case x of [y ](letw = M in L) or [z](letw = N in L)

let y = (let box u = x inM) inN  let box u = x in let y = M inN
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Cut-elimination (2)

let x = L in let z = y M inN  let z = y (let x = L inM) in let x = L inN

let x = N in let 〈y , z〉 = w inM  let 〈y , z〉 = w in let x = N inM

let x = L in casew of [y ]M or [z]N  casew of [y ](let x = L inM) or [z](let x = L inN)

let x = N in let box u = y inM  let box u = y in let x = N inM

let y = λx : A.M in let z = y N in L let y = λx : A.M in let x = N in let z = M in L

let x = 〈M,N〉 in let 〈y , z〉 = x in L let y = M in let z = N in let x = 〈y , z〉 in L

let x = ιA∨B
l (M) in case x of [y ]N or [z]L let y = M in let x = ιA∨B

l (y) inN

let x = ιA∨B
r (M) in case x of [y ]N or [z]L let z = M in let x = ιA∨B

r (z) in L

let x = boxM in let box u = x inN  let u = M in let x = box u inN
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