# On a computational interpretation of sequent calculus for modal logic S4 

## Yosuke Fukuda

Graduate School of Informatics, Kyoto University
Second Workshop on Mathematical Logic and Its Applications March 8th, 2018

## Modal logic in the theory of programming languages

Some studies [Kobayashi '97][Benton+ '98][Pfenning+ '01][Kimura+ '11] discovered that S4 corresponds to various typed $\lambda$-calculi for "meta-programming"

In the logical foundation, $\square$-modality plays an essential role:
$\square \square A$ means the set of programs which "encode" programs of type A

## Modal logic in the theory of programming languages

Some studies [Kobayashi '97][Benton+ '98][Pfenning+ '01][Kimura+ '11] discovered that S4 corresponds to various typed $\lambda$-calculi for "meta-programming"

In the logical foundation, $\square$-modality plays an essential role:
$\square \square A$ means the set of programs which "encode" programs of type $A$

- (this is similar to the intuition in Logic of Proof, etc: $\square A$ means the proposition of a "proof" of $A$ )


## Modal logic in the theory of programming languages

Some studies [Kobayashi '97][Benton+ '98][Pfenning+ '01][Kimura+ '11] discovered that S4 corresponds to various typed $\lambda$-calculi for "meta-programming"

In the logical foundation, $\square$-modality plays an essential role:
$\square \square A$ means the set of programs which "encode" programs of type $A$

- (this is similar to the intuition in Logic of Proof, etc: $\square A$ means the proposition of a "proof" of $A$ )


## Problem from a practical viewpoint

All the previous studies only consider natural-deduction-style $\lambda$-calculi, and they use the "one-step" substitution as usual:

$$
(\lambda x \cdot M) N \rightsquigarrow M[x:=N]
$$

However, the operation is too rich from a practical viewpoint

Natural-deduction-style $\lambda$-calculus is not enough to capture the structure of computation

## Problem from a practical viewpoint

All the previous studies only consider natural-deduction-style $\lambda$-calculi, and they use the "one-step" substitution as usual:

$$
(\lambda x \cdot M) N \rightsquigarrow M[x:=N]
$$

However, the operation is too rich from a practical viewpoint

Natural-deduction-style $\lambda$-calculus is not enough to capture the structure of computation

## Problem from a practical viewpoint

All the previous studies only consider natural-deduction-style $\lambda$-calculi, and they use the "one-step" substitution as usual:

$$
(\lambda x \cdot M) N \rightsquigarrow M[x:=N]
$$

However, the operation is too rich from a practical viewpoint

Natural-deduction-style $\lambda$-calculus is not enough to capture the structure of computation

## This talk

## Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

## To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

## This talk

## Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

1 proof-theoretically based on
■ a modal sequent calculus and the G3-style system
[Troelstra\&Schwichtenberg '96]

- a higher-arity modal natural deduction [Pfenning\&Davies '01]

2 type-theoretically based on

- the higher-arity modal $\lambda$-calculus [Pfenning\&Davies '01]
- the Curry-Howard correspondence for a G3-style sequent calc [Ohori '99]


## This talk

## Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S 4 are proposed

1 proof-theoretically based on:

- a modal sequent calculus and the G3-style system [Troelstra\&Schwichtenberg '96]
- a higher-arity modal natural deduction [Pfenning\&Davies '01]

2 type-theoretically based on:

- the higher-arity modal $\lambda$-calculus [Pfenning\&Davies '01]
- the Curry-Howard correspondence for a G3-style sequent calc [Ohori '99]


## This talk

## Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

1 proof-theoretically based on:

- a modal sequent calculus and the G3-style system [Troelstra\&Schwichtenberg '96]
- a higher-arity modal natural deduction [Pfenning\&Davies '01]

2 type-theoretically based on:

- the higher-arity modal $\lambda$-calculus [Pfenning\&Davies '01]
- the Curry-Howard correspondence for a G3-style sequent calc. [Ohori '99]


## Higher-arity Sequent Calculus for intuitionistic S4

We propose a "higher-arity" sequent calc. for $(\wedge, \vee, \supset, \square)$-fragment of intuitionistic S4, HLJ ${ }_{\mathbf{S 4}}$, based on [Troelstra\&Schwichtenberg '96]

## Definition (Formula)

$$
A, B::=p|A \wedge B| A \vee B|A \supset B| \square A
$$

Definition (Higher-arity judgment [Pfenning+ '01])
A judgment is defined by the following higher-arity form:

$$
\Delta ; \Gamma \vdash A
$$

which intuitively means $(\bigwedge \square \Delta) \wedge(\bigwedge) \supset A$

## Inference rules of HLJ ${ }_{S 4}$

$$
\begin{aligned}
& \overline{\emptyset ; A \vdash A} \mathrm{Ax} \quad \overline{A ; \emptyset \vdash A} \square \mathrm{Ax} \\
& \frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma \vdash B}{\Delta ; \Gamma \vdash A \wedge B} \wedge R \quad \frac{\Delta ; \Gamma, A_{i} \vdash B}{\Delta ; \Gamma, A_{1} \wedge A_{2} \vdash B} \wedge L \\
& \frac{\Delta ; \Gamma \vdash A_{i}}{\Delta ; \Gamma \vdash A_{1} \vee A_{2}} \vee R \quad \frac{\Delta ; \Gamma, A \vdash C \quad \Delta ; \Gamma, B \vdash C}{\Delta ; \Gamma, A \vee B \vdash C} \vee L \\
& \begin{array}{cc}
\frac{\Delta ; \Gamma, A \vdash B}{\Delta ; \Gamma \vdash A \supset B} \supset R & \frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma, B \vdash}{\Delta ; \Gamma, A \supset B \vdash C} \\
\frac{\Delta ; \emptyset \vdash A}{\Delta ; \emptyset \vdash \square A} \square R & \frac{\Delta, A ; \Gamma \vdash B}{\Delta ; \Gamma, \square A \vdash B} \square L
\end{array} \\
& \frac{\Delta ; \Gamma \vdash B}{\Delta ; \Gamma, A \vdash B} \mathrm{~W} \\
& \frac{\Delta ; \Gamma, A, A \vdash B}{\Delta ; \Gamma, A \vdash B} C \\
& \frac{\Delta ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square \mathrm{~W} \\
& \frac{\Delta, A, A ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square C
\end{aligned}
$$

## Init rules of $\mathrm{HLJ}_{\mathrm{S4}}$

Init rule

$$
\overline{\emptyset ; A \vdash A} \mathrm{Ax}
$$

$$
\overline{A ; \emptyset \vdash A} \square \mathrm{Ax}
$$



## Init rules of $\mathrm{HLJ}_{\mathrm{S4}}$

Init rule

$$
\overline{\emptyset ; A \vdash A} \mathrm{Ax}
$$

$$
\overline{A ; \emptyset \vdash A} \square \mathrm{Ax}
$$



## Logical rules of HLJ ${ }_{S 4}$

Logical rule

$$
\begin{array}{cc}
\frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma \vdash B}{\Delta ; \Gamma \vdash A \wedge B} \wedge R & \frac{\Delta ; \Gamma, A_{i} \vdash B}{\Delta ; \Gamma, A_{1} \wedge A_{2} \vdash B} \wedge L \\
\frac{\Delta ; \Gamma \vdash A_{i}}{\Delta ; \Gamma \vdash A_{1} \vee A_{2}} \vee R & \frac{\Delta ; \Gamma, A \vdash C \quad \Delta ; \Gamma, B \vdash C}{\Delta ; \Gamma, A \vee B \vdash C} \\
\frac{\Delta ; \Gamma, A \vdash B}{\Delta ; \Gamma \vdash A \supset B} \supset R & \frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma, B \vdash C}{\Delta ; \Gamma, A \supset B \vdash C} \supset L \\
\frac{\Delta ; \emptyset \vdash A}{\Delta ; \emptyset \vdash \square A} \square R & \frac{\Delta, A ; \Gamma \vdash B}{\Delta ; \Gamma, \square A \vdash B} \square L
\end{array}
$$

## Logical rules of HLJ ${ }_{S 4}$

Logical rule

$$
\begin{array}{cc}
\frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma \vdash B}{\triangle ; \Gamma \vdash A \wedge B} \wedge R & \frac{\Delta ; \Gamma, A_{i} \vdash B}{\Delta ; \Gamma, A_{1} \wedge A_{2} \vdash B} \wedge L \\
\frac{\Delta ; \Gamma \vdash A_{i}}{\Delta ; \Gamma \vdash A_{1} \vee A_{2}} \vee R & \frac{\Delta ; \Gamma, A \vdash C, \Delta ; \Gamma, B \vdash C}{\Delta ; \Gamma, A \vee B \vdash C} \\
\frac{\Delta ; \Gamma, A \vdash B}{\Delta ; \Gamma \vdash A \supset B} \supset R & \frac{\Delta ; \Gamma \vdash A, \Delta ; \Gamma, B \vdash C}{\Delta ; \Gamma, A \supset B \vdash C} \supset L \\
\frac{\Delta ; \emptyset \vdash A}{\triangle ; \emptyset \vdash \square A} \square R & \frac{\Delta, A ; \Gamma \vdash B}{\Delta ; \Gamma ; \square A \vdash B} \square L
\end{array}
$$

## Logical rules of $\mathrm{HLJ}_{\mathrm{S} 4}$

Logical rule

$$
\begin{gathered}
\frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma \vdash B}{\Delta ; \Gamma \vdash A \wedge B} \wedge R
\end{gathered} \frac{\Delta ; \Gamma, A_{i} \vdash B}{\Delta ; \Gamma, A_{1} \wedge A_{2} \vdash B} \wedge L
$$

## Structural rules of $\mathrm{HLJ}_{\mathrm{S} 4}$

Structural rule

$$
\begin{array}{cl}
\frac{\Delta ; \Gamma \vdash B}{\Delta ; \Gamma, A \vdash B} \mathrm{~W} & \frac{\Delta ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square \mathrm{~W} \\
\frac{\Delta ; \Gamma, A, A \vdash B}{\Delta ; \Gamma, A \vdash B} \mathrm{C} & \frac{\Delta, A, A ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square \mathrm{C}
\end{array}
$$

Cut rule

$$
\frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma, A \vdash B}{\Delta ; \Gamma \vdash B} \operatorname{Cut} \frac{\Delta ; \emptyset \vdash A \quad \Delta, A ; \Gamma \vdash B}{\Delta ; \Gamma \vdash B} \square \mathrm{Cut}
$$

## On the cut-elimination procedure

While we can prove the cut-elimination theorem for $\mathbf{H L J} \mathbf{S}_{\mathbf{S} 4}$, the proof by the mix-elimination is problematic; because ...


In the elimination procedure,

- it is "okay" if we consider the provability of the judgment; but
- it is "not okay" if we consider the construction of the judgment


## On the cut-elimination procedure

While we can prove the cut-elimination theorem for $\mathbf{H L J} \mathbf{S}_{\mathbf{S} 4}$, the proof by the mix-elimination is problematic; because ...

$$
\begin{aligned}
& \Pi^{\prime}
\end{aligned}
$$

In the elimination procedure,

- it is "okay" if we consider the provability of the judgment; but - it is "not okay" if we consider the construction of the judgment


## On the cut-elimination procedure

While we can prove the cut-elimination theorem for $\mathrm{HLJ}_{\mathbf{S} 4}$, the proof by the mix-elimination is problematic; because ...

$$
\begin{aligned}
& \Pi^{\prime}
\end{aligned}
$$

In the elimination procedure,
■ it is "okay" if we consider the provability of the judgment; but

- it is "not okay" if we consider the construction of the judgment


## G3-style sequent calculus

The G3-style [Kleene '52][Dragalin '88] is a style of formalization to make a cut-free, or precisely, "structural-rule-free" system

The G3-style inference rules are defined in a somewhat tricky way to derive the "height-preserving admissible" structural rules

## G3-style system for HLJ

The G3-style inference rules are defined as follows:

$$
\begin{aligned}
& \overline{\Delta ; \Gamma, A \vdash A} \mathrm{Ax} \quad \overline{\Delta, A ; \Gamma \vdash A} \square \mathrm{Ax} \\
& \frac{\Delta ; \Gamma, A \vdash B}{\Delta ; \Gamma \vdash A \supset B} \supset R \frac{\Delta ; \Gamma, A \supset B \vdash A \quad \Delta ; \Gamma, A \supset B, B \vdash C}{\Delta ; \Gamma, A \supset B \vdash C} \supset L \\
& \frac{\Delta ; \Gamma \vdash A \quad \Delta ; \Gamma \vdash B}{\Delta ; \Gamma \vdash A \wedge B} \wedge R \quad \frac{\Delta ; \Gamma, A \wedge B, A, B \vdash C}{\Delta ; \Gamma, A \wedge B \vdash C} \wedge L \\
& \frac{\Delta ; \Gamma \vdash A_{i}}{\Delta ; \Gamma \vdash A_{1} \vee A_{2}} \vee R \\
& \frac{\Delta ; \Gamma, A \vee B, A \vdash C \quad \Delta ; \Gamma, A \vee B, B \vdash C}{\Delta ; \Gamma, A \vee B \vdash C} \vee L \\
& \frac{\Delta ; \emptyset \vdash A}{\Delta ; \Gamma \vdash \square A} \square R \\
& \frac{\Delta, A ; \Gamma, \square A \vdash B}{\Delta ; \Gamma, \square A \vdash B} \square L
\end{aligned}
$$

## From the original rules to the G3-style

Idea: all we have to do is to get "height-preserving" structural rules


## Desired properties

## Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in G3-HLJ ${ }_{\mathbf{S 4}}$ :

$$
\begin{array}{ll}
\frac{\Delta ; \Gamma \vdash B}{\overline{\Delta ; \Gamma, A \vdash B} W} & \frac{\Delta ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square W \\
\frac{\Delta ; \Gamma, A, A \vdash B}{\Delta ; \Gamma, A \vdash B} C & \xlongequal[\Delta, A, A ; \Gamma \vdash B]{\Delta, A ; \Gamma \vdash B} \square C
\end{array}
$$

## Theorem (Equivalence)

## The provability of $\mathbf{H I}_{\mathbf{I}_{4}}$ and G3-HLJ $\mathrm{S}_{\mathrm{S}}+$ Cut is equivalent

## Theorem (Cut-elimination)

The cut rules Cut and $\square$ Cut are admissible in G3-HLJS4

## Desired properties

## Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in $\mathbf{G 3}$-HLJ $\mathbf{S 4}$ :

$$
\begin{array}{ll}
\frac{\Delta ; \Gamma \vdash B}{\Delta ; \Gamma, A \vdash B} W & \frac{\Delta ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square W \\
\frac{\Delta ; \Gamma, A, A \vdash B}{\Delta ; \Gamma, A \vdash B} C & \xlongequal[\Delta, A, A ; \Gamma \vdash B]{\Delta, A ; \Gamma \vdash B} \square C
\end{array}
$$

## Theorem (Equivalence)

The provability of $\mathbf{H L J}_{\mathbf{S 4} 4}$ and $\mathbf{G 3}-\mathrm{HLJ}_{\mathbf{S 4}}+$ Cut is equivalent

Theorem (Cut-elimination)
The cut rules Cut and $\square$ Cut are admissible in G3-HLJS4

## Desired properties

## Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in $\mathbf{G 3} \mathbf{- H L J} \mathbf{S 4}$ :

$$
\begin{array}{cl}
\frac{\Delta ; \Gamma \vdash B}{\Delta ; \Gamma, A \vdash B} W & \frac{\Delta ; \Gamma \vdash B}{\Delta, A ; \Gamma \vdash B} \square W \\
\frac{\Delta ; \Gamma, A, A \vdash B}{\Delta ; \Gamma, A \vdash B} C & \xlongequal[\Delta, A, A ; \Gamma \vdash B]{\Delta, A ; \Gamma \vdash B} \square C
\end{array}
$$

## Theorem (Equivalence)

The provability of $\mathbf{H L J}_{\mathbf{S} 4}$ and $\mathbf{G 3}-\mathbf{H L J} \mathbf{S}_{\mathbf{S}}+$ Cut is equivalent
Theorem (Cut-elimination)
The cut rules Cut and $\square$ Cut are admissible in G3-HLJ $\mathrm{S}_{4}$

## Term assignment for the modal sequent calculus

We propose a term assignment system for the $\mathbf{G 3} \mathbf{- H L J} \mathbf{S}_{\mathbf{S}}, \lambda_{\text {seq }}^{\square}$, to get the computational model

As [Ohori '99] did for a G3-style prop. int. sequent calc., we assign terms to $\mathbf{G 3} \mathbf{- H L J} \mathbf{S}_{\mathbf{4}}+\mathbf{C u t}$ as follows:

■ Init/Right rules: assign $\lambda$-terms, as we do for N.D. system
■ Left/Cut rules: assign the so-called "let expression"

Good point: $\lambda_{\text {seq }}^{\square}$ does not use "meta-level" substitution!

## Term assignment for the modal sequent calculus

We propose a term assignment system for the $\mathbf{G 3} \mathbf{- H L J} \mathbf{S}_{\mathbf{S}}, \lambda_{\text {seq }}^{\square}$, to get the computational model

As [Ohori '99] did for a G3-style prop. int. sequent calc., we assign terms to $\mathbf{G 3} \mathbf{- H L J} \mathbf{S}_{\mathbf{4}}+\mathbf{C u t}$ as follows:

■ Init/Right rules: assign $\lambda$-terms, as we do for N.D. system
■ Left/Cut rules: assign the so-called "let expression"

Good point: $\lambda_{\text {seq }}^{\square}$ does not use "meta-level" substitution!

## Term assignment for init/right rules

Assign the modal $\lambda$-term [Pfenning+ '01] to the init/right rules:

$$
\begin{gathered}
\overline{\Delta ; \Gamma, x: A \vdash x: A} A x \quad \overline{\Delta, u: A ; \Gamma \vdash u: A} \square A x \\
\frac{\Delta ; \Gamma \vdash M: A \quad \Delta ; \Gamma \vdash N: B}{\Delta ; \Gamma \vdash\langle M, N\rangle: A \wedge B} \wedge R \\
\frac{\Delta ; \Gamma, x: A \vdash M: B}{\Delta ; \Gamma \vdash \lambda x: A \cdot M: A \supset B} \supset R \\
\frac{\Delta ; \emptyset \vdash M: A}{\Delta ; \Gamma \vdash \operatorname{box} M: \square A} \square R
\end{gathered}
$$

## Term assignment for left rule of conjunction

Assign "let-expression" to the left conjunction rule:

$$
\frac{\Delta ; \Gamma, x: A \wedge B, y: A, z: B \vdash M: C}{\Delta ; \Gamma, x: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} M: C} \wedge L
$$

The reduction intuitively proceeeds, e.g., as:
$($ let $\langle y, z\rangle=\langle N, L\rangle$ in $M) \rightsquigarrow M[y:=N, z:=L]$

## Term assignment for left rule of conjunction

Assign "let-expression" to the left conjunction rule:

$$
\frac{\Delta ; \Gamma, x: A \wedge B, y: A, z: B \vdash M: C}{\Delta ; \Gamma, x: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} M: C} \wedge L
$$

The reduction intuitively proceeeds, e.g., as:
$($ let $\langle y, z\rangle=\langle N, L\rangle$ in $M) \rightsquigarrow M[y:=N, z:=L]$

## Term assignment for left rule of conjunction

Assign "let-expression" to the left conjunction rule:

$$
\frac{\Delta ; \Gamma, x: A \wedge B, y: A, z: B \vdash M: C}{\Delta ; \Gamma, x: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} M: C} \wedge L
$$

The reduction intuitively proceeeds, e.g., as:
$(\operatorname{let}\langle y, z\rangle=\langle N, L\rangle$ in $M) \rightsquigarrow M[y:=N, z:=L]$

## Term assignment for left rule of conjunction

Assign "let-expression" to the left conjunction rule:

$$
\frac{\Delta ; \Gamma, x: A \wedge B, y: A, z: B \vdash M: C}{\Delta ; \Gamma, x: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} M: C} \wedge L
$$

The reduction intuitively proceeeds, e.g., as:
$($ let $\langle y, z\rangle=\langle N, L\rangle$ in $M) \rightsquigarrow M[y:=N, z:=L]$

## Term assignment for the other left rules

The rules for the other left rules are defined similarly:

$$
\frac{\Delta ; \Gamma, x: A \supset B \vdash M: A \quad \Delta ; \Gamma, x: A \supset B, y: B \vdash N: C}{\Delta ; \Gamma, x: A \supset B \vdash \operatorname{let} y=x M \operatorname{in} N: C} \supset L
$$

$$
\frac{\Delta, u: A ; \Gamma, x: \square A \vdash M: B}{\Delta ; \Gamma, x: \square A \vdash \operatorname{let} \operatorname{box} u=x \operatorname{in} M: B} \square L
$$

## Term assignment for cut rules

The term assignment for cut rules are defined as a "composition" of two constructions, again by using let-expressions:

$$
\begin{gathered}
\frac{\Delta ; \Gamma \vdash M: A \quad \Delta ; \Gamma, x: A \vdash N: B}{\Delta ; \Gamma \vdash \operatorname{let} x=M \operatorname{in} N: B} \mathrm{Cut} \\
\frac{\Delta ; \emptyset \vdash M: A \quad \Delta, u: A ; \Gamma \vdash N: B}{\Delta ; \Gamma \vdash \operatorname{let} u=M \operatorname{in} N: B} \square \mathrm{Cut}
\end{gathered}
$$

## Cut-elimination in terms of $\lambda_{\text {seq }}^{\square}$

Let us consider the cut-elimination for conjunction:

$$
\frac{\vdash M: A \quad \vdash N: B}{\vdash\langle M, N\rangle: A \wedge B} \wedge R \quad \frac{x: A \wedge B, y: A, z: B \vdash L: C}{x: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} L: C} \wedge L
$$

To eliminate cuts, all we have to do is to compute:

$$
\begin{aligned}
& (\text { let } x=\langle M, N\rangle \text { in let }\langle y, z\rangle=x \text { in } L) \\
& \rightsquigarrow L[y:=M, z:=N, x:=\langle M, N\rangle]
\end{aligned}
$$

but we do not want to use "meta-level" substitution
Fortunatelly, the (local) cut-elimination step defined in the G3-style is exactly what we want!

## Cut-elimination in terms of $\lambda_{\text {seq }}^{\square}$

Let us consider the cut-elimination for conjunction:

$$
\frac{\vdash M: A \quad \vdash N: B}{\vdash\langle M, N\rangle: A \wedge B} \wedge R \quad \frac{x: A \wedge B, y: A, z: B \vdash L: C}{\vdash: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} L: C} \wedge L
$$

To eliminate cuts, all we have to do is to compute:

$$
\begin{aligned}
& (\text { let } x=\langle M, N\rangle \text { in let }\langle y, z\rangle=x \text { in } L) \\
& \rightsquigarrow L[y:=M, z:=N, x:=\langle M, N\rangle]
\end{aligned}
$$

but we do not want to use "meta-level" substitution

Fortunatelly, the (local) cut-elimination step defined in the G3-style is exactly what we want!

## Cut-elimination in terms of $\lambda_{\text {seq }}^{\square}$

Let us consider the cut-elimination for conjunction:

$$
\frac{\vdash M: A \quad \vdash N: B}{\vdash\langle M, N\rangle: A \wedge B} \wedge R \quad \frac{x: A \wedge B, y: A, z: B \vdash L: C}{\vdash: A \wedge B \vdash \operatorname{let}\langle y, z\rangle=x \operatorname{in} L: C} \wedge L
$$

To eliminate cuts, all we have to do is to compute:

$$
\begin{aligned}
& (\text { let } x=\langle M, N\rangle \text { in let }\langle y, z\rangle=x \text { in } L) \\
& \rightsquigarrow L[y:=M, z:=N, x:=\langle M, N\rangle]
\end{aligned}
$$

but we do not want to use "meta-level" substitution
Fortunatelly, the (local) cut-elimination step defined in the G3-style is exactly what we want!

## Local cut-elimination as program-simplification

(A part of) translation rules are obtained as follows:
Optimization

$$
\begin{aligned}
& (\text { let } x=M \text { in } x) \rightsquigarrow M \\
& (\text { let } x=M \text { in } y) \rightsquigarrow y
\end{aligned}
$$

Flattening
$($ let $w=(\operatorname{let}\langle y, z\rangle=x$ in $M)$ in $N) \rightsquigarrow($ let $\langle y, z\rangle=x$ in let $w=M$ in $N)$
$($ let $y=($ let box $u=x$ in $M)$ in $N) \rightsquigarrow($ let box $u=x$ in let $y=M$ in $N)$
Decomposition
(let $x=\langle M, N\rangle$ in let $\langle y, z\rangle=x$ in $L) \rightsquigarrow($ let $y=M$ in let $z=N$ in let $x=\langle y, z\rangle$ in $L$ )
(let $x=$ box $M$ in let box $u=x$ in $N) \rightsquigarrow($ let $u=M$ in let $x=\boldsymbol{b o x} u$ in $N)$
These translation corresponds to "A-normal form compilation" in
the theory of programming languages

## Local cut-elimination as program-simplification

(A part of) translation rules are obtained as follows:
Optimization

$$
\begin{aligned}
& (\text { let } x=M \text { in } x) \rightsquigarrow M \\
& (\text { let } x=M \text { in } y) \rightsquigarrow y
\end{aligned}
$$

Flattening
$($ let $w=($ let $\langle y, z\rangle=x$ in $M)$ in $N) \rightsquigarrow($ let $\langle y, z\rangle=x$ in let $w=M$ in $N)$ $($ let $y=($ let box $u=x$ in $M)$ in $N) \rightsquigarrow($ let box $u=x$ in let $y=M$ in $N)$
Decomposition
(let $x=\langle M, N\rangle$ in let $\langle y, z\rangle=x$ in $L) \rightsquigarrow($ let $y=M$ in let $z=N$ in let $x=\langle y, z\rangle$ in $L$ )
(let $x=$ box $M$ in let box $u=x$ in $N) \rightsquigarrow($ let $u=M$ in let $x=\boldsymbol{b o x} u$ in $N)$
These translation corresponds to "A-normal form compilation" in the theory of programming languages

## Properties of $\lambda_{\text {seq }}^{\square}$ and the cut-elimination theorem

## Theorem (Subject reduction)

If $\Delta$; $\Gamma \vdash M: A$ and $M \rightsquigarrow M^{\prime}$, then $\Delta ; \Gamma \vdash M^{\prime}: A$
Theorem (Strong normalization)
Every typable term is strongly normalizing

## Corollary (Cut-elimination theorem)

$\lambda_{\text {seq }}^{\square}$ enjoys the cut-elimination theorem, which also yields that every typable term can be reduced to the unique normal form

## Embedding from modal calculus

The following tells us that $\lambda_{\text {seq }}^{\square}$ can be used as a basis of model for the existing theory:

## Theorem (Embedding from modal typed $\lambda$-calculus)

The modal $\lambda$-calc. $\lambda^{\square}$ [Pfenning+ '01] can be embeded into $\lambda_{\text {seq }}^{\square}$ :
$■$ If $\Delta ; \Gamma \vdash M: A$ in $\lambda^{\square}$, then $\Delta ; \Gamma \vdash \llbracket M \rrbracket: A$ in $\lambda_{\text {seq }}^{\square}$

- If $M \rightsquigarrow M^{\prime}$ in $\lambda^{\square}$, then $\llbracket M \rrbracket \rightsquigarrow \llbracket M^{\prime} \rrbracket$ in $\lambda_{\text {seq }}^{\square}$
where $\llbracket-\rrbracket$ means the translation mapping from $\lambda^{\square}$ to $\lambda_{\text {seq }}^{\square}$


## Conclusion and future work

- Conclusion
- A cut-free higher-arity sequent calc. for intuitionistic S4:


## $\mathrm{HLJ}_{\mathrm{S} 4}$ and $\mathbf{G 3}-\mathrm{HLJ}_{\mathrm{S}}$

- (A cut-free higher-arity sequent calc. for classical S4: HLK $_{\text {s4 }}$ and G3-HLK ${ }_{\mathbf{s} 4}$ )
- The corresponding term calculus for G3-HLJ $\mathbf{S}_{4}$
- Future work
- The corresponding term calculus for the classical version, following the work of $\lambda \mu$-calculus for modal logic [Kimura+ '11]
- (Ongoing work with Akira Yoshimizu):

Geometry of Interaction semantics for modal logic in terms of MELL, following the work of Gol semantics for PCF [Mackie '95]

## Appendix

Appendix

## Cut-elimination (1)

$$
\begin{aligned}
& \text { let } x=y \text { in } M \rightsquigarrow M[x:=y] \\
& \text { let } x=u \text { in } M \rightsquigarrow M[x:=u] \\
& \text { let } u=v \text { in } M \rightsquigarrow M[u:=v] \\
& \text { let } x=M \text { in } x \rightsquigarrow M \\
& \text { let } x=M \text { in } y \rightsquigarrow y \\
& \text { let } u=M \text { in } x \rightsquigarrow x \\
& \text { let } u=M \text { in } u \rightsquigarrow M \\
& \text { let } u=M \text { in } v \rightsquigarrow v \\
& \text { let } x=M \text { in } u \rightsquigarrow u
\end{aligned}
$$

let $z=($ let $y=x M$ in $N)$ in $L \rightsquigarrow$ let $y=x M$ in let $z=N$ in $L$
let $w=($ let $\langle y, z\rangle=x$ in $M)$ in $N \rightsquigarrow$ let $\langle y, z\rangle=x$ in let $w=M$ in $N$
let $w=(\operatorname{case} x$ of $[y] M$ or $[z] N)$ in $L \rightsquigarrow$ case $x$ of $[y]($ let $w=M$ in $L)$ or $[z]($ let $w=N$ in $L)$
let $y=($ let box $u=x$ in $M)$ in $N \rightsquigarrow$ let box $u=x$ in let $y=M$ in $N$

## Cut-elimination (2)

let $x=L$ in let $z=y M$ in $N \rightsquigarrow$ let $z=y($ let $x=L$ in $M)$ in let $x=L$ in $N$ let $x=N$ in let $\langle y, z\rangle=w$ in $M \rightsquigarrow$ let $\langle y, z\rangle=w$ in let $x=N$ in $M$ let $x=L$ in case $w$ of $[y] M$ or $[z] N \rightsquigarrow$ case $w$ of $[y]($ let $x=L$ in $M)$ or $[z]($ let $x=L$ in $N)$
let $x=N$ in let box $u=y$ in $M \rightsquigarrow$ let box $u=y$ in let $x=N$ in $M$ let $y=\lambda x: A . M$ in let $z=y N$ in $L \rightsquigarrow$ let $y=\lambda x: A . M$ in let $x=N$ in let $z=M$ in $L$ let $x=\langle M, N\rangle$ in let $\langle y, z\rangle=x$ in $L \rightsquigarrow$ let $y=M$ in let $z=N$ in let $x=\langle y, z\rangle$ in $L$ let $x=\iota_{l}^{A \vee B}(M)$ in case $x$ of $[y] N$ or $[z] L \rightsquigarrow$ let $y=M$ in let $x=\iota_{l}^{A \vee B}(y)$ in $N$ let $x=\iota_{r}^{A \vee B}(M)$ in case $x$ of $[y] N$ or $[z] L \rightsquigarrow$ let $z=M$ in let $x=\iota_{r}^{A \vee B}(z)$ in $L$ let $x=$ box $M$ in let box $u=x$ in $N \rightsquigarrow$ let $u=M$ in let $x=\operatorname{box} u$ in $N$

