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ABSTRACT

In this paper, we present an English-to-Japanese simulta-
neous speech-to-speech translation (S2ST) system. It has
three Transformer-based incremental processing modules for
S2ST: automatic speech recognition (ASR), machine trans-
lation (MT), and text-to-speech synthesis (TTS). We also
evaluated its system-level latency in addition to the module-
level latency and accuracy.

Index Terms— Simultaneous translation, Speech transla-
tion, English-to-Japanese translation

1. INTRODUCTION

Speech-to-speech translation (S2ST) is a promising and chal-
lenging technology for assisting cross-lingual human conver-
sation [1, 2, 3]. Recent deep learning technologies advanced
speech and language processing, and many studies addressed
the problem of real-time automatic S2ST. However, we face a
crucial problem of the delay of the S2ST processes. Since an
S2ST system usually handle speech inputs at the utterance or
sentence level, it has to wait for the end of an utterance so that
the delay becomes proportional to the length of the input. It is
not useful for long monologues such as lectures. Simultane-
ous interpretaion is often used in such situations, but it is also
a very challenging task that requires experienced interpreters.

In this paper, we focus on the problem of simultaneous
S2ST from English to Japanese and present a system based
on neural networks called Transformer. Note that we dif-
ferentiate simultaneous translation from simultaneous inter-
pretation, because the current simultaneous translation does
not include interpretation efforts such as summarization. This
problem requires real-time and incremental processing that
works simultaneously with the input. Most previous attempts
for simultaneous speech translation focused on speech-to-text
translation between English and Europearn languages [4, 5,
6]. Our work aims for S2ST from English to Japanese. En-
glish and Japanese are very different in their syntax and diffi-
cult to translate each other. Our system cascades three mod-
ules: incremental speech recognition (ISR), incremental ma-
chine translation (IMT), and text-to-speech synthesis (ITTS).
End-to-end approaches are used in recent studies on speech

translation [7], but it is still difficult to apply them for English-
to-Japanese S2ST [8].

We evaluate our system in system-level latency in addi-
tion to module-level performance on S2ST from English TED
Talks to Japanese. We have two system-level latency metrics:
(1) the system-level Ear-Voice Span consisting of computa-
tion time and cascading delay, and (2) the cumulative speak-
ing latency derived from the overlap of TTS outputs. The ISR,
IMT, and ITTS modules are evaluated by their standard met-
rics. This is the first attempt of a system-level evaluation for
a simultaneous S2ST system and will benefit future studies.

2. SIMULTANEOUS SPEECH-TO-SPEECH
TRANSLATION

Given input sequence X = x1, x2, ..., x|X|, we predict
the corresponding output sequence Y = y1, y2, ..., y|Y |
by sequence-to-sequence transduction. In simultaneous
translation, we make the prediction one-by-one on subse-
quences. Suppose we have predicted output subsequence
Y j
1 = y1, y2, ..., yj from partial input observations Xi

1 =

x1, x2, ..., xi. When we observe the next partial input Xi
′

i+1 =
xi+1, ..., xi′ , we predict the corresponding output subse-

quence Y j
′

j+1 = yj+1, ..., kj′ based on the following formula:

Y j
′

j+1 = argmax
Ŷ

P (Ŷ |Xi
1, X

i
′

i+1, Y
j
1 ), (1)

where Ŷ is a subsequence-level partial prediction.
Here we face a problem in deciding the length of a partial

observation to make a partial prediction. Non-simultaneous
translation waits until the end of the sentence, but we must
make partial predictions incrementally for simultaneous
translation. This work uses simple fixed-length criteria for
incremental processing, as described in Section 3.

3. INCREMENTAL PROCESSING MODULES

3.1. Incremental speech recognition

We tackle the latency problem in ASR by using our ISR
method [9] on the Transformer-based encoder-decoder model
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Fig. 1. Transformer-based ISR construction with attention
transfer [9] from a standard Transformer-based ASR

[10]. We use a teacher-student framework to train the ISR
model. We firstly train a non-incremental ASR as the teacher
model and then train an ISR as a student model to do block-
wise input processing by learning the knowledge of the
teacher model. The student ISR model has the same model ar-
chitecture as the teacher ASR model and learns to mimic the
speech-text alignment based on the encoder-decoder attention
by the teacher model.

Suppose the teacher ASR model transcribes speech ut-
terance X = x1, x2, ..., x|X| with length |X| into token se-
quence S = s1, s2, ..., s|S| with length |S|. The teacher’s
attention-based alignment is extracted from the attention be-
tween the hidden states of the encoder and decoder. From the
attention sequences in all the layers and heads, the speech-text
alignment for the ISR training was generated through teacher-
forcing decoding to decide the final alignment A by a major-
ity vote. We split X into M sub-segments X̄ = [x̄1, . . . , x̄M ]
and S into S̄ = [s̄0, . . . , s̄M ], using A. Here, an end-of-block
symbol </m> is added at the end of each sub-segment.

ISR learns the incremental steps by learning a pair of X̄
(with the length of the W frames for each speech segment)
and S̄ (Fig. 1). By inference, ISR performs an incremental
recognition step when the speech buffer achieved W frames
to predict the corresponding transcription and then moves to
the next incremental step when it predicts a </m> symbol.
In our ISR, we allowed the model to take look-back and look-
ahead input sequences as the contextual input to provide more
detailed speech information.

3.2. Incremental machine translation

MT suffers from a reordering problem, caused by the syn-
tactic differences between the source and target languages.
Although it is not serious in current neural MT [11, 12], it
remains very problematic when we consider IMT because we
cannot observe a complete sentence. Previous studies took
inputs and predicted the corresponding outputs incrementally
in an adaptive manner [13, 14]. In this work, we use a method
called wait-k, waits for the first k input tokens before starting
the decoding process [15]. The wait-k IMT model translates
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Fig. 2. Incremental text-to-speech synthesis system

a token sequence of source language S = s1, . . . , s|S| into
target language T = t1, . . . , t|T |. The decoder predicts an
output token using a partial input. k is a hyperparameter for
the fixed number of input tokens for the initial wait; setting k
larger leads larger delays, and a smaller k worsens the output
predictions due to poor context information.

In this work, we also introduce two extensions of IMT
training: knowledge distillation and chunk shuffling. We dis-
till knowledge from a non-incremental teacher MT model to
a student wait-k model by sequence-level knowledge distil-
lation [16]. We apply chunk shuffling, random reordering
of Japanese chunks called bunsetsu, for data augmentation.
We expect it encourages the IMT to be monotonic, based on
a characteristic of Japanese in which the order of bunsetsu
chunks can be relaxed. Suppose we have target language sen-
tence T = t1, . . . , t|T | in our training set. We segment T
greedily into a sequence of chunks T̄ = C1, . . . , CQ. The
length of each chunk is set to k (i.e., delay hyperparameter in
wait-k) tokens: Cq = tq1 , . . . , tqk , except for the last chunk
CQ that can be shorter than k. Finally, we shuffle the chunks
with a pre-defined fixed probability pr.

3.3. Incremental text-to-speech synthesis

ITTS synthesizes speech based on a short text segment. In
this work, our ITTS structure is based on the Transformer-
based TTS proposed by Li et al. [17]. It consists of an en-
coder and a decoder, both of which have a Transformer struc-
ture. Given the input sequence of tokens, the encoder maps
the input into semantic space to generate the sequence of the
encoder’s hidden states. This sequence is then utilized by
the decoder, along with the decoder output in the previous
timestep, to predict the speech’s Mel-spectrogram and a stop
token that marks the end-of-sentence. In this work, from the
Mel-spectrogram, we generated speech signals by generating
a magnitude spectrogram using a CBHG (1-D Convolution
Bank + Highway + bidirectional GRU) module that resem-
bles the Tacotron framework [18], followed by speech phase



spectrogram estimation with the Griffin-Lim algorithm and an
inverse short-time Fourier transform (STFT).

The process of our ITTS module in a S2ST system is il-
lustrated in Fig. 2. For each incremental step, ITTS takes the
character sequence of a fixed number of words and synthe-
sizes the corresponding speech. Since it takes a sequence of
Japanese kana phonograms as input, the output of the pre-
ceding IMT, including Japanese kanji morphograms, must be
converted accordingly. We applied lattice-based tokenization
and kanji-to-kana conversion1 to IMT output strings, which
were de-tokenized from subword sequences.

We trained the ITTS using word-level alignment between
speech and text2. Given complete text T = [t1, t2, ..., t|T |]
with length |T | and corresponding speech utterance Y =
[y1, y2, ..., y|Y |] with length |Y |, we split T into Q sub-
segments T̄ = [t̄0, . . . , t̄Q] and Y into Q sub-segments
Ȳ = [ȳ0, . . . , s̄Q], based on the alignment. All T̄ sub-
segments have the same number of words, which are con-
verted into characters when training the ITTS. Each Ȳ sub-
segment is concatenated with a blank at the end to mark the
end-of-speech segment. Here, the blank tensor corresponds
to a stop token label during training. By inference, ITTS
stops the incremental step when the decoder predicts the stop
token and proceeds to the next incremental step by taking the
next step’s input. We allowed the model to take look-back
and look-ahead input sequences as contextual input. Similar
to the main input, the number of words in the contextual input
is fixed and also learned during the ITTS training.

4. EVALUATION

We evaluated our system by an English-to-Japanese simulta-
neous S2ST experiment. We investigated the detailed system
performance by focusing on: (1) system-level latency and (2)
module-level quality.

4.1. Evaluation setup

The ISR, IMT, and ITTS models were trained with a few
different latency parameters for comparison, motivated by
IWSLT evaluation campaign [20].

We constructed ISR with Transformer-big-based model
configuration proposed in Speech-Transformer [10]. The ISR
training was done using TED-LIUM release 1 [21] with a
total of 774 talks (56.8k cut utterances, representing about
118 hours of speech). We extracted 80 dimensions of Mel-
spectrogram features with a 50-ms frame window and a 12.5-
ms window shift as the ISR input. The English speech tran-
scriptions in the ISR training were segmented into subwords
using a byte-pair encoding3 model, which is identical as the

1We used PyKakasi for the tokenization and morphogram conversion
(https://github.com/miurahr/pykakasi)

2We generated the alignment using Montreal Forced Aligner [19]
3subword-nmt toolkit (https://github.com/rsennrich/subword-nmt)

one in the IMT part. We trained two ISR systems with dif-
ferent input delay configurations: 64 frames and 96 frames.
The ISR with 64 frames of input required 32 frames as the
main input and the next 32 frames as the look-ahead input for
each incremental step. In the ISR with 96 frames, it takes 64
frames as the main input and 32 look-ahead frames for each
incremental step. Both models are also allowed to see the
look-back frames with a range of 256 frames. The module-
level ISR systems were evaluated on the TED-LIUM release
1 test set (“TED-LIUM test”) that consisted of 1155 cut short
speech utterances (average 7.88 sec) of long TED talks.

The IMT model configuration was based on Transformer-
base [12]. We first trained the model using the WMT 2020
news task data (17.9 million sentence pairs) and fine-tuned
using IWSLT 2017 data (223 thousand sentence pairs). In the
fine-tuning, we examined different configurations for knowl-
edge distillation and chunk shuffling and chose the configu-
ration based on the results on the validation data. We tok-
enized the sentences into subwords based on Byte Pair En-
coding [22]. The vocabulary was shared over the source and
target languages using 16,000 entries.

The ITTS model configuration was based on Transformer-
based TTS [17]. We utilized the JSUT dataset [23] for model
training, which consists of one Japanese woman’s speech with
5.2k pairs of speech utterances and their corresponding tran-
scriptions. We used 5k utterances for training, 100 for devel-
opment, and 100 for test. We extracted 80 Mel-spectrogram
dimensions with a 50-ms frame window and a 12.5-ms win-
dow shift as the speech feature targets. We constructed two
ITTSs with different input delays in an incremental step: 5
words and 7 words. The ITTS with input of 5 words took
3 main words and 2 look-ahead words for each incremental
step. The ITTS with input of 7 words took 5 main words and
2 look-ahead words as the input for each incremental step.
Both models were also allowed to see the look-back input in
the range of 10 words.

The system-level test set consisted of eight TED talks
(1.89 hours in total) with English and Japanese subtitles.

4.2. Latency

We measured the latency of our system with two different
metrics: Ear-Voice Span (EVS) and cumulative speaking la-
tency.

4.2.1. Ear-Voice Span (EVS)

EVS is a common measure of simultaneous interpretation la-
tency, calculated as the delay between the start of input and
interpretation speech. We used it for the evaluation of the
system-level delay, which we call system-level EVS, caused
by the module-level processing and inter-module communica-
tions. For this purpose, we aligned the module-level outputs
with the output timestamps (Fig. 3). The delays are shown in
Table 1.
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System ISR delay IMT delay ITTS delay
Low latency 0.93 4.69 8.81

(64 frames) (k 10) (5 words)
Medium latency 0.93 8.43 11.87

(64 frames) (k 20 ) (5 words)
High latency 1.30 11.47 16.91

(96 frames) (k 30) (7 words)

Table 1. Module-level processing delays (sec) from begin-
ning of speech inputs by ISR, IMT, and ITTS: Experiment
was conducted on long talk source speech (average length
14.15 min). Note: later modules have to work after their pre-
ceding module, so they include delays in preceding module.

From Table 1, we can see that the ISR worked with fixed
delays, while the latter IMT and ITTS modules were influ-
enced by the delays of the preceding modules.

4.2.2. Cumulative speaking latency

We identified long delays by the ITTS module. A TED Talk
speaker generally talks smoothly without disfuency and long
pauses, so following inputs come to the ITTS module even
during the play of the previous output waveform (Fig. 3). As
a result, such TTS outputs were queued and played later with
large delays, which we call the cumulative speaking latency.
This overlap becomes critical in the long speech inputs. In
this work, we conducted segment-based evaluation and will
tackle talk-level evaluation in future studies.

4.3. Quality

We evaluated the quality of the results by our system, includ-
ing the module-level one for all three modules: ISR, IMT, and
ITTS. In the subjective evaluation described below, twelve
graduate students evaluated the results of IMT and ITTS.

Model TED-LIUM test
(Cut utterances)

TED talk test
(Long talks)

Topline (non-incremental)
Seq2seq LSTM 23.78 25.46
Seq2seq Transformer 21.15 20.74
Baseline: Seq2seq ISR (LSTM)
Input = 64 frames/step 29.01 31.88
Input = 96 frames/step 28.80 32.43
Proposed: Transformer ISR
Input = 64 frames/step 28.55 32.06
Input = 96 frames/step 27.31 25.01

Table 2. ASR performance (WER%) on TED-LIUM and our
TED test data.

4.3.1. Incremental speech recognition

We evaluated the ISR results with the word error rate (WER).
We compared our ISR with the seq2seq LSTM-based ISR
with attention transfer [9] as the baseline and the standard
non-incremental ASR as our topline (Table 2). Our proposed
Transformer-based ISR outperformed the LSTM-based ISR,
especially in the long talk recognition in which the task re-
flects the speech condition in simultaneous S2ST.

4.3.2. Incremental machine translation

We evaluated the ISR+IMT results with BLEU [24] using
TED Japanese subtitle as the reference, calculated by Sacre-
BLEU. Table 3 shows the results. Unfortunately, our BLEU-4
result was very low for the following various reasons: (1) Do-
main mismatch: the in-domain (TED) training data was not
large; (2) Style mismatch: the TED Japanese subtitles are of-
ten idiomatic translations and they may not be suitable for
surface-based evaluation like BLEU; and (3) ASR error prop-
agation.



System ASR
WER

MT
BLEU

Subjective Evaluation
Adequacy Fluency

ST Topline (non-incremental)
Correct text + MT 0.00 15.7 3.41 3.93
Standard ASR + MT 20.74 12.8 3.20 4.01
ST with baseline IMT (incremental)
ISR (64) + IMT (small) 32.06 4.5 2.60 2.56
ISR (64) + IMT (medium) 32.06 7.5 2.86 3.30
ISR (96) + IMT (high) 25.01 8.1 3.31 3.82
ST with proposed IMT (incremental)
ISR (64) + IMT (small) 32.06 5.1 2.80 3.03
ISR (64) + IMT (medium) 32.06 8.4 2.98 3.54
ISR (96) + IMT (high) 25.01 9.4 3.34 3.80

Table 3. Speech translation performance on our TED talk test
data.

System Tacotron
TTS

Transformer
TTS

TTS (non-incremental) 0.57 0.51
ITTS (5 words/step) 0.77 0.58
ITTS (7 words/step) 0.65 0.57

Table 4. L2-norm loss between Mel-spectrogram of original
and ITTS speech on JSUT test data.

We also subjectively evaluated the ISR+IMT results,
based on 1-5 scale adequacy and fluency metrics used in past
MT evaluation campaigns [25]. The rightmost columns in
Table 3 show the results. The adequacy and fluency results
showed correlation with the BLEU-1 results, which are dom-
inated by word unigram precision. The proposed method
demonstrated better results than the baseline in the small and
medium latency conditions.

4.3.3. Incremental speech synthesis

Our ITTS evaluations were done with objective and subjec-
tive evaluations. We conducted an objective evaluation on
JSUT using L2 loss between the correct Mel-spectrogram and
the Mel-spectrogram predicted by ITTS (Table 4). Here our
baselines are the ITTS with a Tacotron (LSTM) structure, and
the topline is the standard non-incremental Transformer TTS.
For the subjective evaluation, we performed an AB prefer-
ence test with our TED talk test data to compare and evalu-
ate the naturalness of the synthesized speech. Sixty pairs of
synthetic speech samples generated by using different meth-
ods were presented to listeners in random orders. The results
show that the performance of the Transformer-based system
was better than the Tacotron-based system. With respect to
the difference between delays in 5 and 7 words, there were no
remarkable differences both in L2-norm and subjective eval-
uation. Thus, the ITTS worked efficiently using 5-word delay
with comparable quality to that using 7-word delay.

Transformer TTS

Transformer TTSTransformer 
ITTS (7 words)

Transformer 
ITTS (7 words)

Transformer 
ITTS (5 words)

Same

Same

SameTacotron 
TTS

0% 25% 50% 75% 100%

Fig. 4. AB preference test scores for ITTS on TED test data.

4.4. Discussion

From the latency viewpoint, our cascade simultaneous S2ST
system worked successfully with relatively short delays.
However, the problem is still challenging in quality due
to various reasons including the error propagation by the cas-
cade and data scarcity. Tight integration of the modules such
as a lattice-to-sequence [26] is promising, although it is not
trivial to apply such integration into simultaneous translation.

Unfortunately, we still do not have common system-level
evaluation methodologies and metrics for simultaneous S2ST
other than module-level ones. The two metrics used in this
work focused only on latency, so we need to evaluate content
delivery through objective measurement. Comparison with
human interpreters in terms of content delivery and user sat-
isfaction are very important in future.

5. CONCLUSIONS

We presented our English-to-Japanese simultaneous S2ST
system and evaluated it using a TED talks dataset. The system
works incrementally by the cascaded incremental processing
of ASR, MT, and TTS, implemented based on Transformer. A
latency evaluation revealed that module-level delay remains
problematic in incremental MT and TTS, even though it can
be controlled by delay hyperparameters at the cost of a drop
in accuracy. Our speech-to-speech simultaneous translation
system also suffers from speaking latency.

In future work, we aim to improve the accuracy and effi-
ciency of the modules based on aggressive anticipation using
large-scale pre-trained models and to decrease the ITTS la-
tency by controlling the speaking duration.
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