Contents

Abstract ii
Acknowledgments iv
1 Introduction 7
1.1 Chapter Introduction 7
1.2 Background 7
1.3 Statement of Research Question 10
1.4 Structure of The Thesis 10
2 Literature Review 14
2.1 Chapter Introduction 14
2.2 Best-First Search Algorithms 15
2.2.1 Conspiracy Number Search 15
2.2.2 Proof Number Search 16
2.2.3 Monte-Carlo Tree Solver 18
2.3 Combining Certainties with Uncertainties 19
2.3.1 Product Propagation 19
2.3.2 Monte-carlo Proof Number Search 21
2.4 Game-tree Structures 23
2.4.1 MIN/MAX tree 23
2.4.2 AND/OR Tree 24
2.4.3 Balanced vs Unbalanced Game-tree 25
2.5 Uncertainty in Entertainment: Game Refinement Theory 26
2.5.1 Motion in Mind 27
2.6 Chapter Summary 28
3 Characterizing the Probability-based Proof Number Search 29
3.1 Chapter Introduction 29
3.2 Probability-based Proof Number Search Algorithm 30
3.2.1 Probability-based Proof Number 30
3.2.2 Algorithm of Probability-based Proof Number Search 32
3.3 Game Test-Beds 35
3.3.1 Comnect Four 35
3.3.2 Othello 36
3.4 Experimental Setup 38
3.5 Result and Discussion 39
3.5.1 Experimental Result on Connect 4 39
3.5.2 Experiment Results on Othello 43
3.5.3 Discussion 45
3.6 Chapter Summary 48
4 Solving Single-Agent Game with Probability-based Proof Number Search 49
4.1 Chapter Introduction 49
4.2 Single Agent Game 50
4.3 Single Agent Probability-based Proof Number Search Algorithm 51
4.4 Game Test-Bed: 2x2 2048 52
4.5 Research Methodology 53
4.5.1 Application of PPN-Search to 2x2 2048 53
4.5.2 Experimental Setup 54
4.6 Result and Discussion 54
4.7 Chapter Summary 6
5 Finding the Critical Aspect of Single-Agent Game Using Single Con- spiracy Number Indicator 58
5.1 Chapter Introduction 58
5.2 Single Conspiracy Number 59
5.2.1 Application of SCN to Two-player Games 60
5.3 Research Methodology 63
5.3.1 2048 as The Test-Beds of Single-Agent Game 63
5.3.2 SCN and Expectimax Algorithm 64
5.3.3 Experimental Setup 66
5.4 Result and Discussion 66
5.4.1 Result 66
5.4.2 Discussion 70
5.4.3 Game Play Implications to level-3ise 71
5.5 Implications of Player Experience to Player Entertainment 73
5.5.1 Applying Result of Different Player level-3ise to Motion in Mind concept 74
5.6 Chapter Summary 78
6 Conclusion 80
Bibliography 83
Publications 91

List of Figures

2-1 Illustration of a MIN/MAX game-tree. The MAX nodes are represented by square, while the MIN nodes are represented by circles. 23
2-2 Illustration of an AND/OR game-tree. The OR nodes are represented by square, while the AND nodes are represented by circles 24
2-3 Illustration of information in unbalanced (left) versus balanced (right) game-tree. 25
3-1 Illustration of PPN calculation in PPN-Search. OR nodes are displayed as square, while AND nodes are displayed as circle 32
3-2 Illustration of $p m c$ calculation in MCPNS. OR nodes are displayed as square, while AND nodes are displayed as circle. 32
3-3 Illustration of Connect Four with a 7×6 board. 35
3-4 Illustration of Othello with an 8×8 board. 37
3-5 Number of Connect Four positions solved, unsolved, and out of bounds by PNS, MCPNS, and PPN-Search. 39
3-6 PPN value of the root of two different positions for PPN-Search. 40
3-7 Number of positions solved, unsolved, and out of bounds by PPN-Search 42
3-8 The completion percentage of PNS, MCPNS, and PPN-Search for different numbers of moves. 44
3-9 The completion percentage of PPN-Search in different stages of Othello. The left-most area colored in orange represents the opening stage of Oth- ello, the middle area (blue) represents the middle game of Othello, and the right-most green area represents the end game of Othello. 46
4-1 Illustration of initial positions ins 2×22048. 52
4-2 Number of 2×22048 initial positions solved, unsolved, and out of bounds by PNS, MCPNS, and PPN-Search 54
5-1 Illustration of tile merging from an initial state of 2048 game, where the player choose to move "down" (left). Then, a random tile appeared in a single turn of the 2048 game right after the merged tile (right) 64
5-2 Illustration of SCN calculation in the Expectimax framework. 65
5-3 Comparison of SCN of 2048 games calculated using threshold configuration of $T 1$ (change with new high number of tile) and $T 2$ (constant). In all of the results, the highest number on the board at the end of the game is 2048. Note that the SCN value is normalized between 0 and 1. 68
5-4 Illustration of 2048 game with $d=2$ (SCN value normalized between 0 and 1) 69
5-5 Illustration of 2048 game with $d=3$ (SCN value normalized between 0 and 1) 69
5-6 Illustration of 2048 game with $d=4$ 70
5-7 Examples of boards with different SCN values 72
5-8 Depiction of the occurrence of the "stability trap" in the simulated level-3 player game $(d=4)$. level-3 players would be able to escape the position and continue their game, leading to a higher score and longer game 73
5-9 Depiction of the occurrence of the "stability trap" in the simulated level-2 player game $(d=3)$. level- 2 players have a higher chance to be trapped in the position, leading to an early end of the game 74
5-10 SCN based Motion in Mind values for: (a) $d=2$, (b) $d=3$, (c) $d=4$, and (d) $d=5$. 76

List of Tables

2.1 Analogical Link Between Motion in Mind and Motion in Physics. 27
3.1 Average time and node for each PPN-Search configurations. 43
3.2 Experimental result of different algorithms applied to Othello positions. 43
3.3 Additional experiment result of applying PPN-Search to different stages of Othello positions. 45
3.4 Best performance search algorithms in different tree structure. 48
4.1 Mechanics In Single Player Games. 51
4.2 Average iterations and nodes visited of PNS, MCPNS, and PPN-Search. 55
5.1 Result of Expectimax implementation on 2048 Game. 66
5.2 Results of the Application of Motion in Mind to 2048. 75
5.3 Analogical Link Between Motion in Mind and SCN in Games 78

