YES proof of AProVE_07_kabasci05.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) QDPOrderProof [EQUIVALENT, 64 ms] (7) QDP (8) QDPOrderProof [EQUIVALENT, 30 ms] (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) UsableRulesProof [EQUIVALENT, 0 ms] (26) QDP (27) QDPSizeChangeProof [EQUIVALENT, 0 ms] (28) YES (29) QDP (30) QDPOrderProof [EQUIVALENT, 41 ms] (31) QDP (32) PisEmptyProof [EQUIVALENT, 0 ms] (33) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) MAX(s(x), s(y)) -> MAX(x, y) MINUS(s(x), s(y)) -> MINUS(x, y) GCD(s(x), s(y)) -> GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y))) GCD(s(x), s(y)) -> MINUS(max(x, y), min(x, transform(y))) GCD(s(x), s(y)) -> MAX(x, y) GCD(s(x), s(y)) -> MIN(x, transform(y)) GCD(s(x), s(y)) -> TRANSFORM(y) GCD(s(x), s(y)) -> MIN(x, y) TRANSFORM(cons(x, y)) -> CONS(cons(x, x), x) TRANSFORM(cons(x, y)) -> CONS(x, x) TRANSFORM(s(x)) -> TRANSFORM(x) CONS(x, cons(y, s(z))) -> CONS(y, x) CONS(cons(x, z), s(y)) -> TRANSFORM(x) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 5 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(x, cons(y, s(z))) -> CONS(y, x) CONS(cons(x, z), s(y)) -> TRANSFORM(x) TRANSFORM(cons(x, y)) -> CONS(cons(x, x), x) TRANSFORM(cons(x, y)) -> CONS(x, x) TRANSFORM(s(x)) -> TRANSFORM(x) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. CONS(x, cons(y, s(z))) -> CONS(y, x) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(CONS(x_1, x_2)) = [[4A]] + [[2A]] * x_1 + [[1A]] * x_2 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[5A]] * x_1 + [[2A]] * x_2 >>> <<< POL(s(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(TRANSFORM(x_1)) = [[4A]] + [[2A]] * x_1 >>> <<< POL(transform(x_1)) = [[3A]] + [[5A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(x, y) -> y transform(cons(x, y)) -> cons(cons(x, x), x) cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) transform(x) -> s(s(x)) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(cons(x, z), s(y)) -> TRANSFORM(x) TRANSFORM(cons(x, y)) -> CONS(cons(x, x), x) TRANSFORM(cons(x, y)) -> CONS(x, x) TRANSFORM(s(x)) -> TRANSFORM(x) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. CONS(cons(x, z), s(y)) -> TRANSFORM(x) TRANSFORM(cons(x, y)) -> CONS(cons(x, x), x) TRANSFORM(cons(x, y)) -> CONS(x, x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(CONS(x_1, x_2)) = [2] + [1/2]x_1 + [1/2]x_2 POL(TRANSFORM(x_1)) = [2] + x_1 POL(cons(x_1, x_2)) = [4] + [2]x_1 + x_2 POL(s(x_1)) = x_1 POL(transform(x_1)) = [4]x_1 The value of delta used in the strict ordering is 2. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(x, y) -> y transform(cons(x, y)) -> cons(cons(x, x), x) cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) transform(x) -> s(s(x)) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: TRANSFORM(s(x)) -> TRANSFORM(x) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: TRANSFORM(s(x)) -> TRANSFORM(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TRANSFORM(s(x)) -> TRANSFORM(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(s(x), s(y)) -> MAX(x, y) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(s(x), s(y)) -> MAX(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MAX(s(x), s(y)) -> MAX(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MIN(s(x), s(y)) -> MIN(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (28) YES ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: GCD(s(x), s(y)) -> GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y))) The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. GCD(s(x), s(y)) -> GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( GCD_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( minus_2(x_1, x_2) ) = x_1 POL( max_2(x_1, x_2) ) = x_1 + x_2 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 + 1 POL( min_2(x_1, x_2) ) = x_1 POL( transform_1(x_1) ) = x_1 + 1 POL( cons_2(x_1, x_2) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) ---------------------------------------- (31) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> s(minus(x, y)) gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y))) transform(x) -> s(s(x)) transform(cons(x, y)) -> cons(cons(x, x), x) transform(cons(x, y)) -> y transform(s(x)) -> s(s(transform(x))) cons(x, y) -> y cons(x, cons(y, s(z))) -> cons(y, x) cons(cons(x, z), s(y)) -> transform(x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (33) YES