YES proof of MNZ_10_0.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 69 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) AND (13) QDP (14) UsableRulesProof [EQUIVALENT, 0 ms] (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) DependencyGraphProof [EQUIVALENT, 0 ms] (22) QDP (23) TransformationProof [EQUIVALENT, 0 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 0 ms] (36) QDP (37) DependencyGraphProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 967 ms] (46) QDP (47) QDPOrderProof [EQUIVALENT, 935 ms] (48) QDP (49) QDPOrderProof [EQUIVALENT, 576 ms] (50) QDP (51) QDPOrderProof [EQUIVALENT, 765 ms] (52) QDP (53) QDPOrderProof [EQUIVALENT, 783 ms] (54) QDP (55) QDPOrderProof [EQUIVALENT, 588 ms] (56) QDP (57) QDPOrderProof [EQUIVALENT, 783 ms] (58) QDP (59) QDPOrderProof [EQUIVALENT, 1842 ms] (60) QDP (61) DependencyGraphProof [EQUIVALENT, 0 ms] (62) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(0)) -> F(0) S(s(s(0))) -> F(s(0)) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(s(0)))))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) G(x) -> H(x, x) S(x) -> H(x, 0) S(x) -> H(0, x) F(g(x)) -> G(g(f(x))) F(g(x)) -> G(f(x)) F(g(x)) -> F(x) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) H(f(x), g(x)) -> F(s(x)) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(0))) -> F(s(0)) F(s(s(0))) -> S(s(s(s(s(s(0)))))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(g(x)) -> G(g(f(x))) G(x) -> H(x, x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(g(x)) -> F(x) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule S(s(s(0))) -> F(s(0)) at position [0] we obtained the following new rules [LPAR04]: (S(s(s(0))) -> F(h(0, 0)),S(s(s(0))) -> F(h(0, 0))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(s(s(s(0)))))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(g(x)) -> G(g(f(x))) G(x) -> H(x, x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(g(x)) -> F(x) H(f(x), g(x)) -> S(x) S(s(s(0))) -> F(h(0, 0)) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(s(0)))))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(g(x)) -> G(g(f(x))) G(x) -> H(x, x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(g(x)) -> F(x) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. G(x) -> H(x, x) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) F(g(x)) -> F(x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_1(x_1) ) = x_1 POL( G_1(x_1) ) = 1 POL( S_1(x_1) ) = 0 POL( s_1(x_1) ) = max{0, -1} POL( h_2(x_1, x_2) ) = 0 POL( 0 ) = 0 POL( f_1(x_1) ) = 2x_1 POL( g_1(x_1) ) = x_1 + 1 POL( H_2(x_1, x_2) ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(s(0)))))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(g(x)) -> G(g(f(x))) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(s(x)) -> G(x) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes. ---------------------------------------- (12) Complex Obligation (AND) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *G(s(x)) -> G(x) The graph contains the following edges 1 > 1 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(s(s(s(0)))))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(s(s(s(0)))))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(s(s(s(s(0)))), 0)),F(s(s(0))) -> S(h(s(s(s(s(0)))), 0))) (F(s(s(0))) -> S(h(0, s(s(s(s(0)))))),F(s(s(0))) -> S(h(0, s(s(s(s(0))))))) (F(s(s(0))) -> S(s(h(s(s(s(0))), 0))),F(s(s(0))) -> S(s(h(s(s(s(0))), 0)))) (F(s(s(0))) -> S(s(h(0, s(s(s(0)))))),F(s(s(0))) -> S(s(h(0, s(s(s(0))))))) (F(s(s(0))) -> S(s(s(f(s(0))))),F(s(s(0))) -> S(s(s(f(s(0)))))) (F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))),F(s(s(0))) -> S(s(s(h(s(s(0)), 0))))) (F(s(s(0))) -> S(s(s(h(0, s(s(0)))))),F(s(s(0))) -> S(s(s(h(0, s(s(0))))))) (F(s(s(0))) -> S(s(s(s(f(0))))),F(s(s(0))) -> S(s(s(s(f(0)))))) (F(s(s(0))) -> S(s(s(s(h(s(0), 0))))),F(s(s(0))) -> S(s(s(s(h(s(0), 0)))))) (F(s(s(0))) -> S(s(s(s(h(0, s(0)))))),F(s(s(0))) -> S(s(s(s(h(0, s(0))))))) (F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))),F(s(s(0))) -> S(s(s(s(s(h(0, 0))))))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(0))) -> S(h(s(s(s(s(0)))), 0)) F(s(s(0))) -> S(h(0, s(s(s(s(0)))))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(s(s(0))))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(s(s(0))))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(s(s(s(0))), 0)),F(s(s(0))) -> S(h(s(s(s(0))), 0))) (F(s(s(0))) -> S(h(0, s(s(s(0))))),F(s(s(0))) -> S(h(0, s(s(s(0)))))) (F(s(s(0))) -> S(s(f(s(0)))),F(s(s(0))) -> S(s(f(s(0))))) (F(s(s(0))) -> S(s(h(s(s(0)), 0))),F(s(s(0))) -> S(s(h(s(s(0)), 0)))) (F(s(s(0))) -> S(s(h(0, s(s(0))))),F(s(s(0))) -> S(s(h(0, s(s(0)))))) (F(s(s(0))) -> S(s(s(f(0)))),F(s(s(0))) -> S(s(s(f(0))))) (F(s(s(0))) -> S(s(s(h(s(0), 0)))),F(s(s(0))) -> S(s(s(h(s(0), 0))))) (F(s(s(0))) -> S(s(s(h(0, s(0))))),F(s(s(0))) -> S(s(s(h(0, s(0)))))) (F(s(s(0))) -> S(s(s(s(h(0, 0))))),F(s(s(0))) -> S(s(s(s(h(0, 0)))))) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(h(s(s(s(0))), 0)) F(s(s(0))) -> S(h(0, s(s(s(0))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(s(0)))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(s(0)))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(f(s(0))),F(s(s(0))) -> S(f(s(0)))) (F(s(s(0))) -> S(h(s(s(0)), 0)),F(s(s(0))) -> S(h(s(s(0)), 0))) (F(s(s(0))) -> S(h(0, s(s(0)))),F(s(s(0))) -> S(h(0, s(s(0))))) (F(s(s(0))) -> S(s(f(0))),F(s(s(0))) -> S(s(f(0)))) (F(s(s(0))) -> S(s(h(s(0), 0))),F(s(s(0))) -> S(s(h(s(0), 0)))) (F(s(s(0))) -> S(s(h(0, s(0)))),F(s(s(0))) -> S(s(h(0, s(0))))) (F(s(s(0))) -> S(s(s(h(0, 0)))),F(s(s(0))) -> S(s(s(h(0, 0))))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(h(s(s(0)), 0)) F(s(s(0))) -> S(h(0, s(s(0)))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(0))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(0))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(f(0)),F(s(s(0))) -> S(f(0))) (F(s(s(0))) -> S(h(s(0), 0)),F(s(s(0))) -> S(h(s(0), 0))) (F(s(s(0))) -> S(h(0, s(0))),F(s(s(0))) -> S(h(0, s(0)))) (F(s(s(0))) -> S(s(h(0, 0))),F(s(s(0))) -> S(s(h(0, 0)))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(f(0)) F(s(s(0))) -> S(h(s(0), 0)) F(s(s(0))) -> S(h(0, s(0))) F(s(s(0))) -> S(s(h(0, 0))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(f(0)) F(s(s(0))) -> S(s(h(0, 0))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(f(0)) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(0),F(s(s(0))) -> S(0)) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(h(0, 0))) F(s(s(0))) -> S(0) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(h(0, 0))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(h(0, 0))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(h(0, 0), 0)),F(s(s(0))) -> S(h(h(0, 0), 0))) (F(s(s(0))) -> S(h(0, h(0, 0))),F(s(s(0))) -> S(h(0, h(0, 0)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(h(h(0, 0), 0)) F(s(s(0))) -> S(h(0, h(0, 0))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(f(0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(F(x_1)) = [[0]] + [[0, 1]] * x_1 >>> <<< POL(s(x_1)) = [[1], [0]] + [[0, 0], [1, 0]] * x_1 >>> <<< POL(0) = [[0], [0]] >>> <<< POL(S(x_1)) = [[0]] + [[0, 1]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [1, 0]] * x_2 >>> <<< POL(f(x_1)) = [[0], [0]] + [[1, 0], [1, 0]] * x_1 >>> <<< POL(g(x_1)) = [[1], [0]] + [[0, 0], [1, 0]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(h(0, s(0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[1A]] + [[2A, 3A, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [3A], [-I]] + [[-I, 0A, 1A], [0A, 0A, 2A], [-I, -I, 1A]] * x_1 >>> <<< POL(0) = [[3A], [-I], [-I]] >>> <<< POL(S(x_1)) = [[3A]] + [[3A, 0A, 2A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [-I]] + [[-I, -I, -I], [-I, 0A, -I], [-I, -I, -I]] * x_1 + [[-I, 0A, -I], [0A, -I, 2A], [-I, -I, -I]] * x_2 >>> <<< POL(f(x_1)) = [[3A], [3A], [-I]] + [[0A, -I, 2A], [0A, -I, 2A], [-I, -I, -I]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [3A], [-I]] + [[0A, 0A, 3A], [0A, 0A, 3A], [-I, -I, -I]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(h(s(s(s(0))), 0))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(s(0), 0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[0A]] + [[1A, 0A, -I]] * x_1 >>> <<< POL(s(x_1)) = [[3A], [3A], [-I]] + [[0A, -I, -I], [3A, 0A, 3A], [-I, -I, 3A]] * x_1 >>> <<< POL(0) = [[0A], [2A], [-I]] >>> <<< POL(S(x_1)) = [[-I]] + [[0A, 0A, -I]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [3A], [-I]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[0A, -I, -I], [3A, -I, 0A], [-I, -I, -I]] * x_2 >>> <<< POL(f(x_1)) = [[-I], [3A], [-I]] + [[0A, -I, -I], [3A, -I, -I], [-I, -I, -I]] * x_1 >>> <<< POL(g(x_1)) = [[3A], [3A], [-I]] + [[0A, -I, -I], [3A, -I, 0A], [-I, -I, -I]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(h(0, s(s(s(0)))))) F(s(s(0))) -> S(s(h(0, s(s(0))))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(S(x_1)) = [[3A]] + [[-I, -I, 3A]] * x_1 >>> <<< POL(s(x_1)) = [[3A], [3A], [3A]] + [[-I, -I, -I], [0A, -I, -I], [2A, 3A, 0A]] * x_1 >>> <<< POL(0) = [[1A], [0A], [0A]] >>> <<< POL(F(x_1)) = [[1A]] + [[0A, -I, 3A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[3A], [1A], [-I]] + [[-I, -I, -I], [0A, -I, -I], [-I, 3A, -I]] * x_1 + [[-I, -I, -I], [-I, -I, -I], [2A, 0A, -I]] * x_2 >>> <<< POL(f(x_1)) = [[3A], [3A], [0A]] + [[0A, -I, -I], [0A, 0A, -I], [3A, 3A, -I]] * x_1 >>> <<< POL(g(x_1)) = [[3A], [3A], [3A]] + [[0A, 0A, -I], [0A, -I, -I], [3A, 3A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(s(h(0, 0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(s(h(s(s(0)), 0)))) F(s(s(0))) -> S(s(s(h(0, s(s(0)))))) F(s(s(0))) -> S(s(s(s(h(s(0), 0))))) F(s(s(0))) -> S(s(s(s(h(0, s(0)))))) F(s(s(0))) -> S(s(s(s(s(h(0, 0)))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(h(0, 0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(S(x_1)) = [[0A]] + [[1A, -I, -I]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [0A], [-I]] + [[0A, 0A, -I], [-I, 0A, -I], [-I, -I, -I]] * x_1 >>> <<< POL(0) = [[1A], [-I], [-I]] >>> <<< POL(F(x_1)) = [[1A]] + [[1A, -I, -I]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [0A], [-I]] + [[0A, -I, -I], [-I, 0A, -I], [-I, -I, -I]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [-I], [-I]] + [[-I, 0A, -I], [-I, 0A, -I], [-I, -I, -I]] * x_1 + [[-I, 0A, -I], [-I, -I, -I], [-I, -I, -I]] * x_2 >>> <<< POL(g(x_1)) = [[0A], [-I], [-I]] + [[0A, 0A, -I], [0A, 0A, -I], [-I, -I, 2A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(f(s(0))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(f(s(0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(S(x_1)) = [[0A]] + [[-I, 3A, -I]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [1A], [0A]] + [[-I, -I, -I], [0A, 0A, 3A], [0A, -I, -I]] * x_1 >>> <<< POL(0) = [[0A], [0A], [-I]] >>> <<< POL(F(x_1)) = [[2A]] + [[1A, 3A, -I]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [2A], [0A]] + [[0A, -I, -I], [1A, 0A, -I], [-I, -I, -I]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [-I], [0A]] + [[-I, -I, -I], [-I, 0A, -I], [-I, -I, -I]] * x_1 + [[-I, -I, -I], [0A, -I, 3A], [-I, -I, -I]] * x_2 >>> <<< POL(g(x_1)) = [[0A], [3A], [0A]] + [[-I, -I, 0A], [2A, 0A, 3A], [-I, -I, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(f(0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(f(s(0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(S(x_1)) = [[1A]] + [[1A, -I, 2A]] * x_1 >>> <<< POL(s(x_1)) = [[2A], [2A], [-I]] + [[-I, -I, 2A], [-I, -I, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(0) = [[1A], [-I], [-I]] >>> <<< POL(F(x_1)) = [[1A]] + [[-I, 3A, -I]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [2A], [0A]] + [[0A, 2A, 2A], [-I, 0A, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[2A], [0A], [-I]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[-I, -I, 2A], [-I, -I, 0A], [-I, 0A, 0A]] * x_2 >>> <<< POL(g(x_1)) = [[3A], [2A], [2A]] + [[0A, 2A, 2A], [-I, -I, 0A], [-I, 0A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(s(f(0)))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(s(f(0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(S(x_1)) = [[2A]] + [[3A, 2A, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[1A], [-I], [-I]] + [[0A, -I, -I], [-I, 0A, 2A], [0A, -I, 0A]] * x_1 >>> <<< POL(0) = [[0A], [-I], [-I]] >>> <<< POL(F(x_1)) = [[1A]] + [[0A, 3A, -I]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [-I], [-I]] + [[0A, -I, 0A], [-I, 1A, -I], [0A, -I, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[1A], [-I], [-I]] + [[-I, -I, -I], [-I, 0A, 2A], [-I, -I, -I]] * x_1 + [[0A, -I, -I], [-I, 0A, 2A], [-I, -I, 0A]] * x_2 >>> <<< POL(g(x_1)) = [[1A], [3A], [1A]] + [[0A, -I, 0A], [3A, 0A, 3A], [0A, -I, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. S(s(s(s(s(s(s(s(0)))))))) -> F(s(s(0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(S(x_1)) = [[0A]] + [[-I, 3A, 2A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [0A], [1A]] + [[0A, -I, 0A], [-I, -I, 0A], [0A, 0A, -I]] * x_1 >>> <<< POL(0) = [[0A], [2A], [-I]] >>> <<< POL(F(x_1)) = [[1A]] + [[1A, 2A, 2A]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [-I], [-I]] + [[0A, -I, -I], [0A, 0A, -I], [0A, -I, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [-I, -I, 0A], [0A, -I, -I]] * x_1 + [[0A, -I, -I], [-I, -I, -I], [0A, -I, -I]] * x_2 >>> <<< POL(g(x_1)) = [[1A], [0A], [0A]] + [[0A, 0A, 0A], [0A, -I, 0A], [0A, 0A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(s(0)))))) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) h(f(x), g(x)) -> f(s(x)) g(s(x)) -> s(s(g(x))) f(0) -> 0 f(s(0)) -> s(0) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (62) TRUE