YES proof of Secret_06_TRS_gen-25.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 515 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 468 ms] (8) QDP (9) PisEmptyProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: b(a, f(b(b(z, y), a))) -> z c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(z, x, a), a, y) -> F(f(c(y, a, f(c(z, y, x))))) C(c(z, x, a), a, y) -> F(c(y, a, f(c(z, y, x)))) C(c(z, x, a), a, y) -> C(y, a, f(c(z, y, x))) C(c(z, x, a), a, y) -> F(c(z, y, x)) C(c(z, x, a), a, y) -> C(z, y, x) F(f(c(a, y, z))) -> B(y, b(z, z)) F(f(c(a, y, z))) -> B(z, z) The TRS R consists of the following rules: b(a, f(b(b(z, y), a))) -> z c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(z, x, a), a, y) -> C(z, y, x) C(c(z, x, a), a, y) -> C(y, a, f(c(z, y, x))) The TRS R consists of the following rules: b(a, f(b(b(z, y), a))) -> z c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C(c(z, x, a), a, y) -> C(z, y, x) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(C(x_1, x_2, x_3)) = [[1A]] + [[-I, 3A, 1A]] * x_1 + [[-I, 1A, 2A]] * x_2 + [[-I, 3A, 3A]] * x_3 >>> <<< POL(c(x_1, x_2, x_3)) = [[2A], [2A], [0A]] + [[0A, -I, 3A], [-I, 2A, 1A], [-I, 0A, 0A]] * x_1 + [[0A, -I, -I], [-I, 1A, 2A], [-I, 0A, 0A]] * x_2 + [[0A, 3A, 3A], [-I, 1A, 0A], [-I, 0A, 0A]] * x_3 >>> <<< POL(a) = [[1A], [2A], [-I]] >>> <<< POL(f(x_1)) = [[0A], [0A], [-I]] + [[0A, 1A, 1A], [-I, -I, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(b(x_1, x_2)) = [[-I], [2A], [-I]] + [[0A, -I, 0A], [-I, 0A, 0A], [-I, 0A, -I]] * x_1 + [[0A, -I, 0A], [-I, 0A, -I], [-I, 0A, 0A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) b(a, f(b(b(z, y), a))) -> z ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(z, x, a), a, y) -> C(y, a, f(c(z, y, x))) The TRS R consists of the following rules: b(a, f(b(b(z, y), a))) -> z c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C(c(z, x, a), a, y) -> C(y, a, f(c(z, y, x))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(C(x_1, x_2, x_3)) = [[-I]] + [[-I, -I, 1A]] * x_1 + [[0A, -I, -I]] * x_2 + [[-I, -I, 3A]] * x_3 >>> <<< POL(c(x_1, x_2, x_3)) = [[0A], [-I], [0A]] + [[-I, -I, -I], [-I, 0A, 0A], [-I, -I, -I]] * x_1 + [[-I, -I, -I], [-I, 0A, 0A], [0A, 0A, -I]] * x_2 + [[-I, -I, -I], [0A, 0A, 0A], [-I, -I, 0A]] * x_3 >>> <<< POL(a) = [[0A], [0A], [3A]] >>> <<< POL(f(x_1)) = [[0A], [0A], [-I]] + [[0A, -I, 0A], [-I, 0A, -I], [0A, -I, -I]] * x_1 >>> <<< POL(b(x_1, x_2)) = [[-I], [0A], [0A]] + [[0A, 0A, -I], [-I, -I, 0A], [-I, -I, -I]] * x_1 + [[-I, -I, 0A], [0A, -I, -I], [-I, -I, 0A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) b(a, f(b(b(z, y), a))) -> z ---------------------------------------- (8) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: b(a, f(b(b(z, y), a))) -> z c(c(z, x, a), a, y) -> f(f(c(y, a, f(c(z, y, x))))) f(f(c(a, y, z))) -> b(y, b(z, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (10) YES