YES proof of Transformed_CSR_04_Ex2_Luc03b_FR.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 39 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FST(s(X), cons(Y, Z)) -> ACTIVATE(X) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ADD(s(X), Y) -> S(n__add(activate(X), Y)) ADD(s(X), Y) -> ACTIVATE(X) LEN(cons(X, Z)) -> S(n__len(activate(Z))) LEN(cons(X, Z)) -> ACTIVATE(Z) ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__len(X)) -> LEN(activate(X)) ACTIVATE(n__len(X)) -> ACTIVATE(X) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) FST(s(X), cons(Y, Z)) -> ACTIVATE(X) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ADD(s(X), Y) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__len(X)) -> LEN(activate(X)) LEN(cons(X, Z)) -> ACTIVATE(Z) ACTIVATE(n__len(X)) -> ACTIVATE(X) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__fst(X1, X2)) -> FST(activate(X1), activate(X2)) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__fst(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__len(X)) -> LEN(activate(X)) ACTIVATE(n__len(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ADD_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( FST_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( LEN_1(x_1) ) = x_1 + 2 POL( activate_1(x_1) ) = x_1 POL( n__fst_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( fst_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( n__from_1(x_1) ) = 2x_1 + 1 POL( from_1(x_1) ) = 2x_1 + 1 POL( n__s_1(x_1) ) = x_1 POL( s_1(x_1) ) = x_1 POL( n__add_2(x_1, x_2) ) = x_1 + x_2 POL( add_2(x_1, x_2) ) = x_1 + x_2 POL( n__len_1(x_1) ) = 2x_1 + 2 POL( len_1(x_1) ) = 2x_1 + 2 POL( cons_2(x_1, x_2) ) = x_2 POL( 0 ) = 0 POL( nil ) = 0 POL( ACTIVATE_1(x_1) ) = x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) fst(0, Z) -> nil fst(X1, X2) -> n__fst(X1, X2) add(0, X) -> X add(X1, X2) -> n__add(X1, X2) len(nil) -> 0 len(X) -> n__len(X) len(cons(X, Z)) -> s(n__len(activate(Z))) s(X) -> n__s(X) add(s(X), Y) -> s(n__add(activate(X), Y)) fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: FST(s(X), cons(Y, Z)) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ADD(s(X), Y) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) LEN(cons(X, Z)) -> ACTIVATE(Z) FST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), activate(X2)) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ADD(x1, x2) = x1 s(x1) = x1 ACTIVATE(x1) = x1 n__add(x1, x2) = n__add(x1, x2) activate(x1) = activate(x1) n__fst(x1, x2) = n__fst fst(x1, x2) = fst n__from(x1) = n__from from(x1) = from n__s(x1) = x1 add(x1, x2) = add(x1, x2) n__len(x1) = n__len len(x1) = len cons(x1, x2) = cons nil = nil 0 = 0 Knuth-Bendix order [KBO] with precedence:activate_1 > fst > n__fst activate_1 > add_2 > n__add_2 activate_1 > cons activate_1 > from > n__from activate_1 > len > n__len activate_1 > len > 0 activate_1 > nil and weight map: n__len=1 n__fst=5 fst=5 add_2=1 0=1 cons=3 n__from=4 from=4 n__add_2=1 activate_1=0 len=1 nil=3 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) add(s(X), Y) -> s(n__add(activate(X), Y)) len(cons(X, Z)) -> s(n__len(activate(Z))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) fst(0, Z) -> nil fst(X1, X2) -> n__fst(X1, X2) add(0, X) -> X add(X1, X2) -> n__add(X1, X2) len(nil) -> 0 len(X) -> n__len(X) s(X) -> n__s(X) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ACTIVATE(X) The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(n__s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (12) TRUE