NO proof of Transformed_CSR_04_Ex9_Luc04_iGM.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 2 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 39 ms] (12) QDP (13) QDPOrderProof [EQUIVALENT, 0 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPOrderProof [EQUIVALENT, 1234 ms] (18) QDP (19) QDPOrderProof [EQUIVALENT, 868 ms] (20) QDP (21) QDPOrderProof [EQUIVALENT, 1799 ms] (22) QDP (23) NonTerminationLoopProof [COMPLETE, 9500 ms] (24) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) ACTIVE(f(a, b, X)) -> F(X, X, X) ACTIVE(c) -> MARK(a) ACTIVE(c) -> MARK(b) MARK(f(X1, X2, X3)) -> ACTIVE(f(mark(X1), X2, mark(X3))) MARK(f(X1, X2, X3)) -> F(mark(X1), X2, mark(X3)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) MARK(a) -> ACTIVE(a) MARK(b) -> ACTIVE(b) MARK(c) -> ACTIVE(c) F(mark(X1), X2, X3) -> F(X1, X2, X3) F(X1, mark(X2), X3) -> F(X1, X2, X3) F(X1, X2, mark(X3)) -> F(X1, X2, X3) F(active(X1), X2, X3) -> F(X1, X2, X3) F(X1, active(X2), X3) -> F(X1, X2, X3) F(X1, X2, active(X3)) -> F(X1, X2, X3) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: F(X1, mark(X2), X3) -> F(X1, X2, X3) F(mark(X1), X2, X3) -> F(X1, X2, X3) F(X1, X2, mark(X3)) -> F(X1, X2, X3) F(active(X1), X2, X3) -> F(X1, X2, X3) F(X1, active(X2), X3) -> F(X1, X2, X3) F(X1, X2, active(X3)) -> F(X1, X2, X3) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: F(X1, mark(X2), X3) -> F(X1, X2, X3) F(mark(X1), X2, X3) -> F(X1, X2, X3) F(X1, X2, mark(X3)) -> F(X1, X2, X3) F(active(X1), X2, X3) -> F(X1, X2, X3) F(X1, active(X2), X3) -> F(X1, X2, X3) F(X1, X2, active(X3)) -> F(X1, X2, X3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(X1, mark(X2), X3) -> F(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *F(mark(X1), X2, X3) -> F(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *F(X1, X2, mark(X3)) -> F(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 *F(active(X1), X2, X3) -> F(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *F(X1, active(X2), X3) -> F(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *F(X1, X2, active(X3)) -> F(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> ACTIVE(f(mark(X1), X2, mark(X3))) ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(f(X1, X2, X3)) -> MARK(X3) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[3A]] + [[0A]] * x_1 + [[0A]] * x_2 + [[3A]] * x_3 >>> <<< POL(ACTIVE(x_1)) = [[3A]] + [[0A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a) = [[3A]] >>> <<< POL(b) = [[1A]] >>> <<< POL(active(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(c) = [[3A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) active(f(a, b, X)) -> mark(f(X, X, X)) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) active(c) -> mark(a) active(c) -> mark(b) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> ACTIVE(f(mark(X1), X2, mark(X3))) ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) MARK(f(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(f(X1, X2, X3)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[4A]] + [[5A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[0A]] + [[1A]] * x_1 + [[-I]] * x_2 + [[2A]] * x_3 >>> <<< POL(ACTIVE(x_1)) = [[4A]] + [[5A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a) = [[0A]] >>> <<< POL(b) = [[3A]] >>> <<< POL(active(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(c) = [[3A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) active(f(a, b, X)) -> mark(f(X, X, X)) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) active(c) -> mark(a) active(c) -> mark(b) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> ACTIVE(f(mark(X1), X2, mark(X3))) ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule MARK(f(X1, X2, X3)) -> ACTIVE(f(mark(X1), X2, mark(X3))) at position [0] we obtained the following new rules [LPAR04]: (MARK(f(x0, x1, y2)) -> ACTIVE(f(x0, x1, mark(y2))),MARK(f(x0, x1, y2)) -> ACTIVE(f(x0, x1, mark(y2)))) (MARK(f(y0, mark(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))),MARK(f(y0, mark(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2)))) (MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2)),MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2))) (MARK(f(y0, active(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))),MARK(f(y0, active(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2)))) (MARK(f(f(x0, x1, x2), y1, y2)) -> ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))),MARK(f(f(x0, x1, x2), y1, y2)) -> ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))) (MARK(f(a, y1, y2)) -> ACTIVE(f(active(a), y1, mark(y2))),MARK(f(a, y1, y2)) -> ACTIVE(f(active(a), y1, mark(y2)))) (MARK(f(b, y1, y2)) -> ACTIVE(f(active(b), y1, mark(y2))),MARK(f(b, y1, y2)) -> ACTIVE(f(active(b), y1, mark(y2)))) (MARK(f(c, y1, y2)) -> ACTIVE(f(active(c), y1, mark(y2))),MARK(f(c, y1, y2)) -> ACTIVE(f(active(c), y1, mark(y2)))) (MARK(f(y0, y1, f(x0, x1, x2))) -> ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))),MARK(f(y0, y1, f(x0, x1, x2))) -> ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))) (MARK(f(y0, y1, a)) -> ACTIVE(f(mark(y0), y1, active(a))),MARK(f(y0, y1, a)) -> ACTIVE(f(mark(y0), y1, active(a)))) (MARK(f(y0, y1, b)) -> ACTIVE(f(mark(y0), y1, active(b))),MARK(f(y0, y1, b)) -> ACTIVE(f(mark(y0), y1, active(b)))) (MARK(f(y0, y1, c)) -> ACTIVE(f(mark(y0), y1, active(c))),MARK(f(y0, y1, c)) -> ACTIVE(f(mark(y0), y1, active(c)))) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) MARK(f(x0, x1, y2)) -> ACTIVE(f(x0, x1, mark(y2))) MARK(f(y0, mark(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2)) MARK(f(y0, active(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(f(x0, x1, x2), y1, y2)) -> ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))) MARK(f(a, y1, y2)) -> ACTIVE(f(active(a), y1, mark(y2))) MARK(f(b, y1, y2)) -> ACTIVE(f(active(b), y1, mark(y2))) MARK(f(c, y1, y2)) -> ACTIVE(f(active(c), y1, mark(y2))) MARK(f(y0, y1, f(x0, x1, x2))) -> ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))) MARK(f(y0, y1, a)) -> ACTIVE(f(mark(y0), y1, active(a))) MARK(f(y0, y1, b)) -> ACTIVE(f(mark(y0), y1, active(b))) MARK(f(y0, y1, c)) -> ACTIVE(f(mark(y0), y1, active(c))) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(f(y0, y1, b)) -> ACTIVE(f(mark(y0), y1, active(b))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVE(x_1)) = [[1A]] + [[-I, 1A, 2A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[2A], [1A], [0A]] + [[-I, 0A, 3A], [-I, -I, -I], [-I, -I, 0A]] * x_1 + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_2 + [[-I, -I, -I], [-I, 2A, 3A], [-I, -I, 3A]] * x_3 >>> <<< POL(a) = [[1A], [-I], [2A]] >>> <<< POL(b) = [[1A], [-I], [-I]] >>> <<< POL(MARK(x_1)) = [[3A]] + [[0A, 1A, 2A]] * x_1 >>> <<< POL(mark(x_1)) = [[1A], [-I], [-I]] + [[3A, 3A, 3A], [-I, 0A, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(active(x_1)) = [[0A], [-I], [-I]] + [[3A, 3A, 1A], [-I, 0A, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(c) = [[0A], [3A], [2A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f(X1, mark(X2), X3) -> f(X1, X2, X3) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) active(f(a, b, X)) -> mark(f(X, X, X)) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) active(c) -> mark(a) active(c) -> mark(b) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) MARK(f(x0, x1, y2)) -> ACTIVE(f(x0, x1, mark(y2))) MARK(f(y0, mark(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2)) MARK(f(y0, active(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(f(x0, x1, x2), y1, y2)) -> ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))) MARK(f(a, y1, y2)) -> ACTIVE(f(active(a), y1, mark(y2))) MARK(f(b, y1, y2)) -> ACTIVE(f(active(b), y1, mark(y2))) MARK(f(c, y1, y2)) -> ACTIVE(f(active(c), y1, mark(y2))) MARK(f(y0, y1, f(x0, x1, x2))) -> ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))) MARK(f(y0, y1, a)) -> ACTIVE(f(mark(y0), y1, active(a))) MARK(f(y0, y1, c)) -> ACTIVE(f(mark(y0), y1, active(c))) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(f(y0, y1, a)) -> ACTIVE(f(mark(y0), y1, active(a))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVE(x_1)) = [[3A]] + [[-I, -I, 1A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[3A], [3A], [-I]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[-I, 0A, 1A], [-I, 0A, -I], [-I, 1A, 2A]] * x_2 + [[-I, 0A, 1A], [-I, 0A, 1A], [-I, 2A, 3A]] * x_3 >>> <<< POL(a) = [[2A], [-I], [-I]] >>> <<< POL(b) = [[0A], [3A], [3A]] >>> <<< POL(MARK(x_1)) = [[0A]] + [[3A, -I, -I]] * x_1 >>> <<< POL(mark(x_1)) = [[3A], [0A], [-I]] + [[-I, -I, 0A], [-I, 0A, 1A], [-I, -I, -I]] * x_1 >>> <<< POL(active(x_1)) = [[0A], [-I], [-I]] + [[0A, -I, 0A], [-I, 0A, 1A], [-I, -I, -I]] * x_1 >>> <<< POL(c) = [[3A], [3A], [3A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f(X1, mark(X2), X3) -> f(X1, X2, X3) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) active(f(a, b, X)) -> mark(f(X, X, X)) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) active(c) -> mark(a) active(c) -> mark(b) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) MARK(f(x0, x1, y2)) -> ACTIVE(f(x0, x1, mark(y2))) MARK(f(y0, mark(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2)) MARK(f(y0, active(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(f(x0, x1, x2), y1, y2)) -> ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))) MARK(f(a, y1, y2)) -> ACTIVE(f(active(a), y1, mark(y2))) MARK(f(b, y1, y2)) -> ACTIVE(f(active(b), y1, mark(y2))) MARK(f(c, y1, y2)) -> ACTIVE(f(active(c), y1, mark(y2))) MARK(f(y0, y1, f(x0, x1, x2))) -> ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))) MARK(f(y0, y1, c)) -> ACTIVE(f(mark(y0), y1, active(c))) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(f(y0, y1, f(x0, x1, x2))) -> ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVE(x_1)) = [[0A]] + [[-I, 3A, 2A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[0A], [-I], [3A]] + [[-I, -I, -I], [1A, -I, -I], [2A, -I, -I]] * x_1 + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_2 + [[-I, -I, -I], [2A, -I, -I], [2A, -I, -I]] * x_3 >>> <<< POL(a) = [[2A], [-I], [-I]] >>> <<< POL(b) = [[0A], [-I], [0A]] >>> <<< POL(MARK(x_1)) = [[0A]] + [[-I, 3A, 3A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I], [-I], [2A]] + [[0A, -I, -I], [-I, 1A, -I], [-I, 0A, 0A]] * x_1 >>> <<< POL(active(x_1)) = [[-I], [-I], [2A]] + [[0A, -I, -I], [-I, 1A, -I], [-I, -I, 0A]] * x_1 >>> <<< POL(c) = [[2A], [-I], [-I]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f(X1, mark(X2), X3) -> f(X1, X2, X3) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) active(f(a, b, X)) -> mark(f(X, X, X)) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) active(c) -> mark(a) active(c) -> mark(b) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) MARK(f(x0, x1, y2)) -> ACTIVE(f(x0, x1, mark(y2))) MARK(f(y0, mark(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2)) MARK(f(y0, active(x1), y2)) -> ACTIVE(f(mark(y0), x1, mark(y2))) MARK(f(f(x0, x1, x2), y1, y2)) -> ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))) MARK(f(a, y1, y2)) -> ACTIVE(f(active(a), y1, mark(y2))) MARK(f(b, y1, y2)) -> ACTIVE(f(active(b), y1, mark(y2))) MARK(f(c, y1, y2)) -> ACTIVE(f(active(c), y1, mark(y2))) MARK(f(y0, y1, c)) -> ACTIVE(f(mark(y0), y1, active(c))) The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) mark(f(X1, X2, X3)) -> active(f(mark(X1), X2, mark(X3))) mark(a) -> active(a) mark(b) -> active(b) mark(c) -> active(c) f(mark(X1), X2, X3) -> f(X1, X2, X3) f(X1, mark(X2), X3) -> f(X1, X2, X3) f(X1, X2, mark(X3)) -> f(X1, X2, X3) f(active(X1), X2, X3) -> f(X1, X2, X3) f(X1, active(X2), X3) -> f(X1, X2, X3) f(X1, X2, active(X3)) -> f(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = MARK(f(active(c), active(c), X3')) evaluates to t =MARK(f(X3', X3', X3')) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [X3' / active(c)] -------------------------------------------------------------------------------- Rewriting sequence MARK(f(active(c), active(c), active(c))) -> MARK(f(active(c), mark(b), active(c))) with rule active(c) -> mark(b) at position [0,1] and matcher [ ] MARK(f(active(c), mark(b), active(c))) -> MARK(f(mark(a), mark(b), active(c))) with rule active(c) -> mark(a) at position [0,0] and matcher [ ] MARK(f(mark(a), mark(b), active(c))) -> MARK(f(mark(a), b, active(c))) with rule f(X1, mark(X2), X3') -> f(X1, X2, X3') at position [0] and matcher [X1 / mark(a), X2 / b, X3' / active(c)] MARK(f(mark(a), b, active(c))) -> MARK(f(a, b, active(c))) with rule f(mark(X1), X2, X3) -> f(X1, X2, X3) at position [0] and matcher [X1 / a, X2 / b, X3 / active(c)] MARK(f(a, b, active(c))) -> ACTIVE(f(mark(a), b, active(c))) with rule MARK(f(y0, x1, x2)) -> ACTIVE(f(mark(y0), x1, x2)) at position [] and matcher [y0 / a, x1 / b, x2 / active(c)] ACTIVE(f(mark(a), b, active(c))) -> ACTIVE(f(a, b, active(c))) with rule f(mark(X1), X2, X3) -> f(X1, X2, X3) at position [0] and matcher [X1 / a, X2 / b, X3 / active(c)] ACTIVE(f(a, b, active(c))) -> MARK(f(active(c), active(c), active(c))) with rule ACTIVE(f(a, b, X)) -> MARK(f(X, X, X)) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (24) NO