YES proof of Transformed_CSR_04_ExIntrod_GM04_iGM.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 71 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 6 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) UsableRulesProof [EQUIVALENT, 0 ms] (26) QDP (27) QDPSizeChangeProof [EQUIVALENT, 0 ms] (28) YES (29) QDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) QDP (32) QDPSizeChangeProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QDPSizeChangeProof [EQUIVALENT, 0 ms] (38) YES (39) QDP (40) MRRProof [EQUIVALENT, 21 ms] (41) QDP (42) MRRProof [EQUIVALENT, 0 ms] (43) QDP (44) MRRProof [EQUIVALENT, 19 ms] (45) QDP (46) TransformationProof [EQUIVALENT, 0 ms] (47) QDP (48) DependencyGraphProof [EQUIVALENT, 0 ms] (49) QDP (50) QDPOrderProof [EQUIVALENT, 133 ms] (51) QDP (52) QDPOrderProof [EQUIVALENT, 0 ms] (53) QDP (54) PisEmptyProof [EQUIVALENT, 0 ms] (55) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(hd(x_1)) = 1 + x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 2 POL(s(x_1)) = x_1 POL(tl(x_1)) = 2 + 2*x_1 POL(zeros) = 2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(hd(x_1)) = 2 + 2*x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 2 POL(s(x_1)) = x_1 POL(tl(x_1)) = 2 + x_1 POL(zeros) = 1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: active(nats) -> mark(adx(zeros)) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(zeros) -> MARK(cons(0, zeros)) ACTIVE(zeros) -> CONS(0, zeros) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) ACTIVE(incr(cons(X, Y))) -> CONS(s(X), incr(Y)) ACTIVE(incr(cons(X, Y))) -> S(X) ACTIVE(incr(cons(X, Y))) -> INCR(Y) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) ACTIVE(adx(cons(X, Y))) -> INCR(cons(X, adx(Y))) ACTIVE(adx(cons(X, Y))) -> CONS(X, adx(Y)) ACTIVE(adx(cons(X, Y))) -> ADX(Y) MARK(nats) -> ACTIVE(nats) MARK(adx(X)) -> ACTIVE(adx(mark(X))) MARK(adx(X)) -> ADX(mark(X)) MARK(adx(X)) -> MARK(X) MARK(zeros) -> ACTIVE(zeros) MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) MARK(0) -> ACTIVE(0) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(hd(X)) -> HD(mark(X)) MARK(hd(X)) -> MARK(X) MARK(tl(X)) -> ACTIVE(tl(mark(X))) MARK(tl(X)) -> TL(mark(X)) MARK(tl(X)) -> MARK(X) ADX(mark(X)) -> ADX(X) ADX(active(X)) -> ADX(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) INCR(mark(X)) -> INCR(X) INCR(active(X)) -> INCR(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) HD(mark(X)) -> HD(X) HD(active(X)) -> HD(X) TL(mark(X)) -> TL(X) TL(active(X)) -> TL(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 13 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: TL(active(X)) -> TL(X) TL(mark(X)) -> TL(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: TL(active(X)) -> TL(X) TL(mark(X)) -> TL(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TL(active(X)) -> TL(X) The graph contains the following edges 1 > 1 *TL(mark(X)) -> TL(X) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: HD(active(X)) -> HD(X) HD(mark(X)) -> HD(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: HD(active(X)) -> HD(X) HD(mark(X)) -> HD(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HD(active(X)) -> HD(X) The graph contains the following edges 1 > 1 *HD(mark(X)) -> HD(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(active(X)) -> INCR(X) INCR(mark(X)) -> INCR(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(active(X)) -> INCR(X) INCR(mark(X)) -> INCR(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *INCR(active(X)) -> INCR(X) The graph contains the following edges 1 > 1 *INCR(mark(X)) -> INCR(X) The graph contains the following edges 1 > 1 ---------------------------------------- (28) YES ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: ADX(active(X)) -> ADX(X) ADX(mark(X)) -> ADX(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ADX(active(X)) -> ADX(X) ADX(mark(X)) -> ADX(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADX(active(X)) -> ADX(X) The graph contains the following edges 1 > 1 *ADX(mark(X)) -> ADX(X) The graph contains the following edges 1 > 1 ---------------------------------------- (38) YES ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(adx(X)) -> MARK(X) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(hd(X)) -> MARK(X) MARK(tl(X)) -> ACTIVE(tl(mark(X))) MARK(tl(X)) -> MARK(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(tl(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = 2*x_1 POL(MARK(x_1)) = 2*x_1 POL(active(x_1)) = x_1 POL(adx(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = 2*x_1 + 2*x_2 POL(hd(x_1)) = 2*x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 1 POL(s(x_1)) = x_1 POL(tl(x_1)) = 1 + x_1 POL(zeros) = 0 ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(adx(X)) -> MARK(X) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(hd(X)) -> MARK(X) MARK(tl(X)) -> ACTIVE(tl(mark(X))) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(adx(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = 2 + 2*x_1 POL(MARK(x_1)) = 2 + 2*x_1 POL(active(x_1)) = x_1 POL(adx(x_1)) = 2 + 2*x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(hd(x_1)) = x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 1 POL(s(x_1)) = x_1 POL(tl(x_1)) = 2 + x_1 POL(zeros) = 2 ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(hd(X)) -> MARK(X) MARK(tl(X)) -> ACTIVE(tl(mark(X))) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(hd(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = 2 + 2*x_1 POL(MARK(x_1)) = 2 + 2*x_1 POL(active(x_1)) = x_1 POL(adx(x_1)) = 1 + 2*x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(hd(x_1)) = 1 + 2*x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 1 POL(s(x_1)) = x_1 POL(tl(x_1)) = 2 + x_1 POL(zeros) = 2 ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(tl(X)) -> ACTIVE(tl(mark(X))) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) at position [0] we obtained the following new rules [LPAR04]: (MARK(cons(mark(x0), x1)) -> ACTIVE(cons(x0, x1)),MARK(cons(mark(x0), x1)) -> ACTIVE(cons(x0, x1))) (MARK(cons(x0, mark(x1))) -> ACTIVE(cons(x0, x1)),MARK(cons(x0, mark(x1))) -> ACTIVE(cons(x0, x1))) (MARK(cons(active(x0), x1)) -> ACTIVE(cons(x0, x1)),MARK(cons(active(x0), x1)) -> ACTIVE(cons(x0, x1))) (MARK(cons(x0, active(x1))) -> ACTIVE(cons(x0, x1)),MARK(cons(x0, active(x1))) -> ACTIVE(cons(x0, x1))) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(tl(X)) -> ACTIVE(tl(mark(X))) MARK(cons(mark(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, mark(x1))) -> ACTIVE(cons(x0, x1)) MARK(cons(active(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, active(x1))) -> ACTIVE(cons(x0, x1)) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(tl(X)) -> ACTIVE(tl(mark(X))) MARK(cons(mark(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, mark(x1))) -> ACTIVE(cons(x0, x1)) MARK(cons(active(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, active(x1))) -> ACTIVE(cons(x0, x1)) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(adx(X)) -> ACTIVE(adx(mark(X))) ACTIVE(incr(cons(X, Y))) -> MARK(cons(s(X), incr(Y))) MARK(incr(X)) -> ACTIVE(incr(mark(X))) MARK(incr(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = x_1 + 1 POL( adx_1(x_1) ) = 2 POL( hd_1(x_1) ) = 2x_1 POL( incr_1(x_1) ) = 2x_1 + 1 POL( tl_1(x_1) ) = max{0, -2} POL( mark_1(x_1) ) = 2x_1 POL( nats ) = 1 POL( active_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = max{0, -1} POL( zeros ) = 2 POL( 0 ) = 2 POL( s_1(x_1) ) = 0 POL( MARK_1(x_1) ) = 2x_1 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(nats) -> active(nats) mark(cons(X1, X2)) -> active(cons(X1, X2)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) mark(adx(X)) -> active(adx(mark(X))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(zeros) -> active(zeros) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) mark(0) -> active(0) adx(active(X)) -> adx(X) adx(mark(X)) -> adx(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) incr(active(X)) -> incr(X) incr(mark(X)) -> incr(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) hd(active(X)) -> hd(X) hd(mark(X)) -> hd(X) tl(active(X)) -> tl(X) tl(mark(X)) -> tl(X) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(tl(X)) -> ACTIVE(tl(mark(X))) MARK(cons(mark(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, mark(x1))) -> ACTIVE(cons(x0, x1)) MARK(cons(active(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, active(x1))) -> ACTIVE(cons(x0, x1)) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(adx(cons(X, Y))) -> MARK(incr(cons(X, adx(Y)))) MARK(s(X)) -> ACTIVE(s(X)) MARK(hd(X)) -> ACTIVE(hd(mark(X))) MARK(tl(X)) -> ACTIVE(tl(mark(X))) MARK(cons(mark(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, mark(x1))) -> ACTIVE(cons(x0, x1)) MARK(cons(active(x0), x1)) -> ACTIVE(cons(x0, x1)) MARK(cons(x0, active(x1))) -> ACTIVE(cons(x0, x1)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = ACTIVE MARK(x1) = x1 incr(x1) = incr s(x1) = s hd(x1) = hd tl(x1) = tl cons(x1, x2) = cons Knuth-Bendix order [KBO] with precedence:s > ACTIVE > incr and weight map: s=1 hd=2 ACTIVE=1 cons=2 tl=2 incr=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: incr(active(X)) -> incr(X) incr(mark(X)) -> incr(X) ---------------------------------------- (53) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) mark(nats) -> active(nats) mark(adx(X)) -> active(adx(mark(X))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(0) -> active(0) mark(incr(X)) -> active(incr(mark(X))) mark(s(X)) -> active(s(X)) mark(hd(X)) -> active(hd(mark(X))) mark(tl(X)) -> active(tl(mark(X))) adx(mark(X)) -> adx(X) adx(active(X)) -> adx(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) incr(mark(X)) -> incr(X) incr(active(X)) -> incr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) hd(mark(X)) -> hd(X) hd(active(X)) -> hd(X) tl(mark(X)) -> tl(X) tl(active(X)) -> tl(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (55) YES