NO proof of Transformed_CSR_04_LengthOfFiniteLists_nosorts_iGM.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 jera 20211004 unpublished Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 62 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 13 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 0 ms] (6) QTRS (7) QTRSRRRProof [EQUIVALENT, 17 ms] (8) QTRS (9) DependencyPairsProof [EQUIVALENT, 23 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) AND (13) QDP (14) UsableRulesProof [EQUIVALENT, 0 ms] (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) MRRProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPOrderProof [EQUIVALENT, 71 ms] (39) QDP (40) DependencyGraphProof [EQUIVALENT, 0 ms] (41) QDP (42) QDPOrderProof [EQUIVALENT, 21 ms] (43) QDP (44) QDPOrderProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPOrderProof [EQUIVALENT, 0 ms] (47) QDP (48) TransformationProof [EQUIVALENT, 0 ms] (49) QDP (50) TransformationProof [EQUIVALENT, 0 ms] (51) QDP (52) DependencyGraphProof [EQUIVALENT, 0 ms] (53) QDP (54) MRRProof [EQUIVALENT, 0 ms] (55) QDP (56) QDPOrderProof [EQUIVALENT, 49 ms] (57) QDP (58) QDPOrderProof [EQUIVALENT, 26 ms] (59) QDP (60) NonTerminationLoopProof [COMPLETE, 0 ms] (61) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(and(tt, X)) -> mark(X) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(tt) -> active(tt) mark(length(X)) -> active(length(mark(X))) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(and(x_1, x_2)) = x_1 + 2*x_2 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(length(x_1)) = 2*x_1 POL(mark(x_1)) = 2*x_1 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tt) = 2 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: active(and(tt, X)) -> mark(X) mark(tt) -> active(tt) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(length(X)) -> active(length(mark(X))) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(and(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(length(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nil) = 2 POL(s(x_1)) = 2*x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: active(length(nil)) -> mark(0) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(length(X)) -> active(length(mark(X))) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(and(x_1, x_2)) = x_1 + 2*x_2 POL(cons(x_1, x_2)) = 2*x_1 + 2*x_2 POL(length(x_1)) = x_1 POL(mark(x_1)) = 2*x_1 POL(nil) = 2 POL(s(x_1)) = x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: mark(nil) -> active(nil) ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. ---------------------------------------- (7) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(active(x_1)) = x_1 POL(and(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 POL(cons(x_1, x_2)) = 2*x_1 + 2*x_2 POL(length(x_1)) = 2*x_1 POL(mark(x_1)) = 2*x_1 POL(s(x_1)) = x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: mark(and(X1, X2)) -> active(and(mark(X1), X2)) ---------------------------------------- (8) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. ---------------------------------------- (9) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(zeros) -> MARK(cons(0, zeros)) ACTIVE(zeros) -> CONS(0, zeros) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) ACTIVE(length(cons(N, L))) -> S(length(L)) ACTIVE(length(cons(N, L))) -> LENGTH(L) MARK(zeros) -> ACTIVE(zeros) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(0) -> ACTIVE(0) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(length(X)) -> LENGTH(mark(X)) MARK(length(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) AND(mark(X1), X2) -> AND(X1, X2) AND(X1, mark(X2)) -> AND(X1, X2) AND(active(X1), X2) -> AND(X1, X2) AND(X1, active(X2)) -> AND(X1, X2) LENGTH(mark(X)) -> LENGTH(X) LENGTH(active(X)) -> LENGTH(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 7 less nodes. ---------------------------------------- (12) Complex Obligation (AND) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH(active(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 *LENGTH(mark(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: AND(X1, mark(X2)) -> AND(X1, X2) AND(mark(X1), X2) -> AND(X1, X2) AND(active(X1), X2) -> AND(X1, X2) AND(X1, active(X2)) -> AND(X1, X2) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: AND(X1, mark(X2)) -> AND(X1, X2) AND(mark(X1), X2) -> AND(X1, X2) AND(active(X1), X2) -> AND(X1, X2) AND(X1, active(X2)) -> AND(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *AND(X1, mark(X2)) -> AND(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *AND(mark(X1), X2) -> AND(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *AND(active(X1), X2) -> AND(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *AND(X1, active(X2)) -> AND(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(cons(X1, X2)) -> MARK(X1) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(length(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(0) -> active(0) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(cons(X1, X2)) -> MARK(X1) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(length(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(length(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(length(x_1)) = 2 + x_1 POL(mark(x_1)) = x_1 POL(s(x_1)) = x_1 POL(zeros) = 0 ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(cons(X1, X2)) -> MARK(X1) MARK(zeros) -> ACTIVE(zeros) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(zeros) -> ACTIVE(zeros) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = 1 POL( cons_2(x_1, x_2) ) = 2x_1 POL( length_1(x_1) ) = 0 POL( s_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 + 1 POL( zeros ) = 1 POL( mark_1(x_1) ) = 2x_1 POL( 0 ) = 0 POL( MARK_1(x_1) ) = x_1 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(zeros) -> MARK(cons(0, zeros)) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = x_1 POL( MARK_1(x_1) ) = x_1 POL( s_1(x_1) ) = x_1 POL( length_1(x_1) ) = 0 POL( mark_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = 2x_1 + 2 POL( zeros ) = 2 POL( 0 ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) active(zeros) -> mark(cons(0, zeros)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = x_1 POL( MARK_1(x_1) ) = 2x_1 POL( s_1(x_1) ) = 2x_1 POL( length_1(x_1) ) = 0 POL( mark_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = 1 POL( zeros ) = 1 POL( 0 ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) active(zeros) -> mark(cons(0, zeros)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = x_1 + 1 POL( MARK_1(x_1) ) = 2 POL( s_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 1 POL( mark_1(x_1) ) = x_1 + 2 POL( active_1(x_1) ) = 2x_1 + 2 POL( zeros ) = 2 POL( cons_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( 0 ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule MARK(length(X)) -> ACTIVE(length(mark(X))) at position [0] we obtained the following new rules [LPAR04]: (MARK(length(x0)) -> ACTIVE(length(x0)),MARK(length(x0)) -> ACTIVE(length(x0))) (MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1)))),MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1))))) (MARK(length(zeros)) -> ACTIVE(length(active(zeros))),MARK(length(zeros)) -> ACTIVE(length(active(zeros)))) (MARK(length(length(x0))) -> ACTIVE(length(active(length(mark(x0))))),MARK(length(length(x0))) -> ACTIVE(length(active(length(mark(x0)))))) (MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))),MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0)))))) (MARK(length(0)) -> ACTIVE(length(active(0))),MARK(length(0)) -> ACTIVE(length(active(0)))) ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(s(X)) -> MARK(X) MARK(length(x0)) -> ACTIVE(length(x0)) MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1)))) MARK(length(zeros)) -> ACTIVE(length(active(zeros))) MARK(length(length(x0))) -> ACTIVE(length(active(length(mark(x0))))) MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))) MARK(length(0)) -> ACTIVE(length(active(0))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule MARK(length(0)) -> ACTIVE(length(active(0))) at position [0] we obtained the following new rules [LPAR04]: (MARK(length(0)) -> ACTIVE(length(0)),MARK(length(0)) -> ACTIVE(length(0))) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(s(X)) -> MARK(X) MARK(length(x0)) -> ACTIVE(length(x0)) MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1)))) MARK(length(zeros)) -> ACTIVE(length(active(zeros))) MARK(length(length(x0))) -> ACTIVE(length(active(length(mark(x0))))) MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))) MARK(length(0)) -> ACTIVE(length(0)) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(length(x0)) -> ACTIVE(length(x0)) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1)))) MARK(length(zeros)) -> ACTIVE(length(active(zeros))) MARK(length(length(x0))) -> ACTIVE(length(active(length(mark(x0))))) MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(length(length(x0))) -> ACTIVE(length(active(length(mark(x0))))) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = 2 + x_1 POL(MARK(x_1)) = 1 + 2*x_1 POL(active(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(length(x_1)) = 1 + x_1 POL(mark(x_1)) = x_1 POL(s(x_1)) = x_1 POL(zeros) = 0 ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(length(x0)) -> ACTIVE(length(x0)) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1)))) MARK(length(zeros)) -> ACTIVE(length(active(zeros))) MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(length(x0)) -> ACTIVE(length(x0)) MARK(length(cons(x0, x1))) -> ACTIVE(length(active(cons(mark(x0), x1)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[3A]] + [[4A]] * x_1 >>> <<< POL(s(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(ACTIVE(x_1)) = [[3A]] + [[3A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[3A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(active(x_1)) = [[3A]] + [[0A]] * x_1 >>> <<< POL(mark(x_1)) = [[3A]] + [[0A]] * x_1 >>> <<< POL(zeros) = [[2A]] >>> <<< POL(0) = [[3A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) active(zeros) -> mark(cons(0, zeros)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(length(zeros)) -> ACTIVE(length(active(zeros))) MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(length(s(x0))) -> ACTIVE(length(active(s(mark(x0))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = max{0, x_1 - 2} POL( MARK_1(x_1) ) = 2 POL( s_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2x_1 + 2 POL( mark_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 POL( zeros ) = 1 POL( cons_2(x_1, x_2) ) = 1 POL( 0 ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) active(zeros) -> mark(cons(0, zeros)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) MARK(length(zeros)) -> ACTIVE(length(active(zeros))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(zeros) -> mark(cons(0, zeros)) active(length(cons(N, L))) -> mark(s(length(L))) mark(zeros) -> active(zeros) mark(length(X)) -> active(length(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length(active(X)) -> length(X) length(mark(X)) -> length(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = MARK(length(zeros)) evaluates to t =MARK(length(zeros)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence MARK(length(zeros)) -> ACTIVE(length(active(zeros))) with rule MARK(length(zeros)) -> ACTIVE(length(active(zeros))) at position [] and matcher [ ] ACTIVE(length(active(zeros))) -> ACTIVE(length(mark(cons(0, zeros)))) with rule active(zeros) -> mark(cons(0, zeros)) at position [0,0] and matcher [ ] ACTIVE(length(mark(cons(0, zeros)))) -> ACTIVE(length(cons(0, zeros))) with rule length(mark(X)) -> length(X) at position [0] and matcher [X / cons(0, zeros)] ACTIVE(length(cons(0, zeros))) -> MARK(s(length(zeros))) with rule ACTIVE(length(cons(N, L))) -> MARK(s(length(L))) at position [] and matcher [N / 0, L / zeros] MARK(s(length(zeros))) -> MARK(length(zeros)) with rule MARK(s(X)) -> MARK(X) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (61) NO