YES TRS: t(N) -> cs(r(q(N)),nt(ns(N))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) d(0()) -> 0() d(s(X)) -> s(s(d(X))) p(0(),X) -> X p(X,0()) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) t(X) -> nt(X) s(X) -> ns(X) f(X1,X2) -> nf(X1,X2) a(nt(X)) -> t(a(X)) a(ns(X)) -> s(a(X)) a(nf(X1,X2)) -> f(a(X1),a(X2)) a(X) -> X linear polynomial interpretations on N: t_A(x1) = x1 + 4 t#_A(x1) = 5 cs_A(x1,x2) = x2 cs#_A(x1,x2) = 3 r_A(x1) = 1 r#_A(x1) = 0 q_A(x1) = 1 q#_A(x1) = 4 nt_A(x1) = x1 + 4 nt#_A(x1) = 2 ns_A(x1) = x1 ns#_A(x1) = 0 0_A = 0 0#_A = 1 s_A(x1) = x1 s#_A(x1) = 1 p_A(x1,x2) = x1 + x2 p#_A(x1,x2) = x1 + 2 d_A(x1) = 0 d#_A(x1) = 2 f_A(x1,x2) = x1 + x2 + 3 f#_A(x1,x2) = x2 + 4 nil_A = 0 nil#_A = 0 nf_A(x1,x2) = x1 + x2 + 3 nf#_A(x1,x2) = 1 a_A(x1) = x1 a#_A(x1) = x1 + 2 precedence: nf > f > cs = ns = p > q = nt = a > t = r = 0 = s > d = nil