YES TRS: eq(0(),0()) -> true() eq(0(),s(m)) -> false() eq(s(n),0()) -> false() eq(s(n),s(m)) -> eq(n,m) le(0(),m) -> true() le(s(n),0()) -> false() le(s(n),s(m)) -> le(n,m) min(cons(0(),nil())) -> 0() min(cons(s(n),nil())) -> s(n) min(cons(n,cons(m,x))) -> if_min(le(n,m),cons(n,cons(m,x))) if_min(true(),cons(n,cons(m,x))) -> min(cons(n,x)) if_min(false(),cons(n,cons(m,x))) -> min(cons(m,x)) replace(n,m,nil()) -> nil() replace(n,m,cons(k,x)) -> if_replace(eq(n,k),n,m,cons(k,x)) if_replace(true(),n,m,cons(k,x)) -> cons(m,x) if_replace(false(),n,m,cons(k,x)) -> cons(k,replace(n,m,x)) sort(nil()) -> nil() sort(cons(n,x)) -> cons(min(cons(n,x)),sort(replace(min(cons(n,x)),n,x))) linear polynomial interpretations on N: eq_A(x1,x2) = 1 eq#_A(x1,x2) = 1 0_A = 1 0#_A = 1 true_A = 1 true#_A = 0 s_A(x1) = 0 s#_A(x1) = 3 false_A = 1 false#_A = 0 le_A(x1,x2) = 1 le#_A(x1,x2) = 1 min_A(x1) = 1 min#_A(x1) = 2 cons_A(x1,x2) = x2 + 3 cons#_A(x1,x2) = x2 nil_A = 4 nil#_A = 2 if_min_A(x1,x2) = 1 if_min#_A(x1,x2) = 1 replace_A(x1,x2,x3) = x3 replace#_A(x1,x2,x3) = x1 + x3 + 1 if_replace_A(x1,x2,x3,x4) = x4 if_replace#_A(x1,x2,x3,x4) = x2 + x4 sort_A(x1) = x1 sort#_A(x1) = x1 precedence: sort > replace > eq = s = if_replace > true = false > le = if_min > cons > min = nil > 0