YES TRS: fst(0(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) from(X) -> cons(X,n__from(s(X))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) from(X) -> n__from(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__from(X)) -> from(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X linear polynomial interpretations on N: fst_A(x1,x2) = x1 + x2 + 1 fst#_A(x1,x2) = x1 + x2 + 3 0_A = 0 0#_A = 1 nil_A = 0 nil#_A = 0 s_A(x1) = x1 + 1 s#_A(x1) = 3 cons_A(x1,x2) = x2 + 1 cons#_A(x1,x2) = 2 n__fst_A(x1,x2) = x1 + x2 n__fst#_A(x1,x2) = x1 + x2 activate_A(x1) = x1 + 1 activate#_A(x1) = x1 + 5 from_A(x1) = 1 from#_A(x1) = 4 n__from_A(x1) = 0 n__from#_A(x1) = 3 add_A(x1,x2) = x1 + x2 + 1 add#_A(x1,x2) = x1 + x2 + 5 n__add_A(x1,x2) = x1 + x2 n__add#_A(x1,x2) = 0 len_A(x1) = x1 + 2 len#_A(x1) = x1 + 5 n__len_A(x1) = x1 + 1 n__len#_A(x1) = x1 precedence: fst > cons = len > s = n__len > 0 = n__fst = activate > nil = from = add > n__from = n__add