YES TRS: a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M)) a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M)) a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y)) a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N))) a__nats(N) -> cons(mark(N),nats(s(N))) a__zprimes() -> a__sieve(a__nats(s(s(0())))) mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes()) -> a__zprimes() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(0()) -> 0() mark(s(X)) -> s(mark(X)) a__filter(X1,X2,X3) -> filter(X1,X2,X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes() -> zprimes() linear polynomial interpretations on N: a__filter_A(x1,x2,x3) = x1 + x2 + x3 + 2 a__filter#_A(x1,x2,x3) = x1 + x2 + 3 cons_A(x1,x2) = x1 + 1 cons#_A(x1,x2) = 0 0_A = 1 0#_A = 4 filter_A(x1,x2,x3) = x1 + x2 + x3 + 2 filter#_A(x1,x2,x3) = 1 s_A(x1) = x1 + 1 s#_A(x1) = x1 + 2 mark_A(x1) = x1 mark#_A(x1) = x1 + 2 a__sieve_A(x1) = x1 + 3 a__sieve#_A(x1) = x1 + 4 sieve_A(x1) = x1 + 3 sieve#_A(x1) = 3 a__nats_A(x1) = x1 + 4 a__nats#_A(x1) = x1 + 5 nats_A(x1) = x1 + 4 nats#_A(x1) = x1 + 3 a__zprimes_A = 11 a__zprimes#_A = 12 zprimes_A = 11 zprimes#_A = 0 precedence: a__sieve = nats > mark > a__filter > cons > 0 = filter = sieve > a__zprimes > s = zprimes > a__nats