YES TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) terms(X) -> n__terms(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X max/plus interpretations on N: terms_A(x1) = max{11, -10} terms#_A(x1) = max{4, 12} cons_A(x1,x2) = max{3, -9, x2} cons#_A(x1,x2) = max{12, 3, 1} recip_A(x1) = max{1, 1} recip#_A(x1) = max{12, 2 + x1} sqr_A(x1) = max{10, 1} sqr#_A(x1) = max{5, 11} n__terms_A(x1) = max{11, -11} n__terms#_A(x1) = max{12, 11} s_A(x1) = max{3, 2} s#_A(x1) = max{3, 3} 0_A = 10 0#_A = 10 add_A(x1,x2) = max{3, 2, 2 + x2} add#_A(x1,x2) = max{2, 3, 3} dbl_A(x1) = max{10, 2} dbl#_A(x1) = max{9, 6} first_A(x1,x2) = max{2, -1, 11 + x2} first#_A(x1,x2) = max{0, 12, 7 + x2} nil_A = 2 nil#_A = 6 n__first_A(x1,x2) = max{11, -1, 11 + x2} n__first#_A(x1,x2) = max{11, -1, 7 + x2} activate_A(x1) = max{1, x1} activate#_A(x1) = max{12, 2 + x1} precedence: sqr > add = dbl > s = 0 > terms = nil > recip = n__terms = first > cons = n__first > activate