NO Problem: zeros() -> cons(0(),n__zeros()) and(tt(),X) -> activate(X) length(nil()) -> 0() length(cons(N,L)) -> s(length(activate(L))) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> n__zeros() take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(X1,X2) activate(X) -> X Proof: Matrix Interpretation Processor: dim=1 interpretation: [n__take](x0, x1) = x0 + 2x1, [take](x0, x1) = 2x0 + 4x1, [s](x0) = x0, [length](x0) = 2x0, [nil] = 0, [activate](x0) = 2x0, [and](x0, x1) = 4x0 + 4x1 + 1, [tt] = 1, [cons](x0, x1) = 4x0 + 2x1, [n__zeros] = 2, [0] = 0, [zeros] = 4 orientation: zeros() = 4 >= 4 = cons(0(),n__zeros()) and(tt(),X) = 4X + 5 >= 2X = activate(X) length(nil()) = 0 >= 0 = 0() length(cons(N,L)) = 4L + 8N >= 4L = s(length(activate(L))) take(0(),IL) = 4IL >= 0 = nil() take(s(M),cons(N,IL)) = 8IL + 2M + 16N >= 8IL + 2M + 4N = cons(N,n__take(M,activate(IL))) zeros() = 4 >= 2 = n__zeros() take(X1,X2) = 2X1 + 4X2 >= X1 + 2X2 = n__take(X1,X2) activate(n__zeros()) = 4 >= 4 = zeros() activate(n__take(X1,X2)) = 2X1 + 4X2 >= 2X1 + 4X2 = take(X1,X2) activate(X) = 2X >= X = X problem: zeros() -> cons(0(),n__zeros()) length(nil()) -> 0() length(cons(N,L)) -> s(length(activate(L))) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [1 1 0] [n__take](x0, x1) = [1 0 0]x0 + [0 0 1]x1 [0 1 1] [0 0 0] , [1 0 1] [1 1 0] [take](x0, x1) = [1 0 0]x0 + [0 0 1]x1 [1 1 1] [0 0 1] , [1 0 0] [s](x0) = [0 0 0]x0 [0 1 1] , [1 0 0] [0] [length](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [1] [nil] = [0] [0], [1 0 0] [activate](x0) = [0 1 0]x0 [0 1 1] , [1 0 0] [1 0 0] [cons](x0, x1) = [0 0 0]x0 + [0 1 0]x1 [0 1 0] [0 1 1] , [0] [n__zeros] = [0] [1], [0] [0] = [0] [1], [0] [zeros] = [0] [1] orientation: [0] [0] zeros() = [0] >= [0] = cons(0(),n__zeros()) [1] [1] [1] [0] length(nil()) = [0] >= [0] = 0() [1] [1] [1 0 0] [1 0 0] [0] [1 0 0] [0] length(cons(N,L)) = [0 0 0]L + [0 0 0]N + [0] >= [0 0 0]L + [0] = s(length(activate(L))) [0 0 0] [0 0 0] [1] [0 0 0] [1] [1 1 0] [1] [1] take(0(),IL) = [0 0 1]IL + [0] >= [0] = nil() [0 0 1] [1] [0] [1 1 0] [1 1 1] [1 0 0] [1 1 0] [1 0 1] [1 0 0] take(s(M),cons(N,IL)) = [0 1 1]IL + [1 0 0]M + [0 1 0]N >= [0 1 1]IL + [1 0 0]M + [0 0 0]N = cons(N,n__take(M,activate(IL))) [0 1 1] [1 1 1] [0 1 0] [0 1 1] [1 1 1] [0 1 0] [1 0 1] [1 1 0] [1 0 1] [1 1 0] take(X1,X2) = [1 0 0]X1 + [0 0 1]X2 >= [1 0 0]X1 + [0 0 1]X2 = n__take(X1,X2) [1 1 1] [0 0 1] [0 1 1] [0 0 0] [0] [0] activate(n__zeros()) = [0] >= [0] = zeros() [1] [1] [1 0 1] [1 1 0] [1 0 1] [1 1 0] activate(n__take(X1,X2)) = [1 0 0]X1 + [0 0 1]X2 >= [1 0 0]X1 + [0 0 1]X2 = take(X1,X2) [1 1 1] [0 0 1] [1 1 1] [0 0 1] [1 0 0] activate(X) = [0 1 0]X >= X = X [0 1 1] problem: zeros() -> cons(0(),n__zeros()) length(cons(N,L)) -> s(length(activate(L))) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [1 0 0] [0] [n__take](x0, x1) = [1 1 0]x0 + [1 0 0]x1 + [0] [0 0 0] [0 0 0] [1], [1 0 1] [1 0 0] [0] [take](x0, x1) = [1 1 0]x0 + [1 0 0]x1 + [1] [0 0 0] [0 0 0] [1], [1 0 1] [s](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [length](x0) = [0 0 0]x0 [0 0 0] , [0] [nil] = [0] [0], [1 0 0] [activate](x0) = [0 1 1]x0 [0 1 1] , [1 1 0] [1 0 0] [cons](x0, x1) = [0 0 0]x0 + [0 0 1]x1 [0 0 0] [0 0 0] , [1] [n__zeros] = [0] [1], [0] [0] = [0] [1], [1] [zeros] = [1] [0] orientation: [1] [1] zeros() = [1] >= [1] = cons(0(),n__zeros()) [0] [0] [1 0 0] [1 1 0] [1 0 0] length(cons(N,L)) = [0 0 0]L + [0 0 0]N >= [0 0 0]L = s(length(activate(L))) [0 0 0] [0 0 0] [0 0 0] [1 0 0] [1] [0] take(0(),IL) = [1 0 0]IL + [1] >= [0] = nil() [0 0 0] [1] [0] [1 0 0] [1 0 1] [1 1 0] [0] [1 0 0] [1 0 1] [1 1 0] [0] take(s(M),cons(N,IL)) = [1 0 0]IL + [1 0 1]M + [1 1 0]N + [1] >= [0 0 0]IL + [0 0 0]M + [0 0 0]N + [1] = cons(N,n__take(M,activate(IL))) [0 0 0] [0 0 0] [0 0 0] [1] [0 0 0] [0 0 0] [0 0 0] [0] [1 0 1] [1 0 0] [0] [1 0 1] [1 0 0] [0] take(X1,X2) = [1 1 0]X1 + [1 0 0]X2 + [1] >= [1 1 0]X1 + [1 0 0]X2 + [0] = n__take(X1,X2) [0 0 0] [0 0 0] [1] [0 0 0] [0 0 0] [1] [1] [1] activate(n__zeros()) = [1] >= [1] = zeros() [1] [0] [1 0 1] [1 0 0] [0] [1 0 1] [1 0 0] [0] activate(n__take(X1,X2)) = [1 1 0]X1 + [1 0 0]X2 + [1] >= [1 1 0]X1 + [1 0 0]X2 + [1] = take(X1,X2) [1 1 0] [1 0 0] [1] [0 0 0] [0 0 0] [1] [1 0 0] activate(X) = [0 1 1]X >= X = X [0 1 1] problem: zeros() -> cons(0(),n__zeros()) length(cons(N,L)) -> s(length(activate(L))) take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [1 0 0] [0] [n__take](x0, x1) = [0 0 1]x0 + [0 0 0]x1 + [1] [0 0 0] [0 0 0] [1], [1 0 1] [1 0 0] [1] [take](x0, x1) = [0 0 1]x0 + [0 0 0]x1 + [1] [0 0 0] [0 0 0] [1], [1 1 0] [s](x0) = [0 0 0]x0 [0 0 1] , [1 0 0] [1] [length](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [1 0 1] [activate](x0) = [0 1 0]x0 [0 0 1] , [1 0 0] [1 0 1] [cons](x0, x1) = [0 0 0]x0 + [0 0 0]x1 [0 0 0] [0 0 0] , [1] [n__zeros] = [0] [0], [0] [0] = [0] [0], [1] [zeros] = [0] [0] orientation: [1] [1] zeros() = [0] >= [0] = cons(0(),n__zeros()) [0] [0] [1 0 1] [1 0 0] [1] [1 0 1] [1] length(cons(N,L)) = [0 0 0]L + [0 0 0]N + [0] >= [0 0 0]L + [0] = s(length(activate(L))) [0 0 0] [0 0 0] [1] [0 0 0] [1] [1 0 1] [1 1 1] [1 0 0] [1] [1 0 1] [1 0 1] [1 0 0] [1] take(s(M),cons(N,IL)) = [0 0 0]IL + [0 0 1]M + [0 0 0]N + [1] >= [0 0 0]IL + [0 0 0]M + [0 0 0]N + [0] = cons(N,n__take(M,activate(IL))) [0 0 0] [0 0 0] [0 0 0] [1] [0 0 0] [0 0 0] [0 0 0] [0] [1 0 1] [1 0 0] [1] [1 0 1] [1 0 0] [0] take(X1,X2) = [0 0 1]X1 + [0 0 0]X2 + [1] >= [0 0 1]X1 + [0 0 0]X2 + [1] = n__take(X1,X2) [0 0 0] [0 0 0] [1] [0 0 0] [0 0 0] [1] [1] [1] activate(n__zeros()) = [0] >= [0] = zeros() [0] [0] [1 0 1] [1 0 0] [1] [1 0 1] [1 0 0] [1] activate(n__take(X1,X2)) = [0 0 1]X1 + [0 0 0]X2 + [1] >= [0 0 1]X1 + [0 0 0]X2 + [1] = take(X1,X2) [0 0 0] [0 0 0] [1] [0 0 0] [0 0 0] [1] [1 0 1] activate(X) = [0 1 0]X >= X = X [0 0 1] problem: zeros() -> cons(0(),n__zeros()) length(cons(N,L)) -> s(length(activate(L))) take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [n__take](x0, x1) = x0 + x1, [take](x0, x1) = 4x0 + 4x1 + 2, [s](x0) = x0, [length](x0) = 5x0 + 7, [activate](x0) = 4x0 + 2, [cons](x0, x1) = 2x0 + 4x1 + 2, [n__zeros] = 0, [0] = 0, [zeros] = 2 orientation: zeros() = 2 >= 2 = cons(0(),n__zeros()) length(cons(N,L)) = 20L + 10N + 17 >= 20L + 17 = s(length(activate(L))) take(s(M),cons(N,IL)) = 16IL + 4M + 8N + 10 >= 16IL + 4M + 2N + 10 = cons(N,n__take(M,activate(IL))) activate(n__zeros()) = 2 >= 2 = zeros() activate(n__take(X1,X2)) = 4X1 + 4X2 + 2 >= 4X1 + 4X2 + 2 = take(X1,X2) activate(X) = 4X + 2 >= X = X problem: zeros() -> cons(0(),n__zeros()) length(cons(N,L)) -> s(length(activate(L))) take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(X1,X2) Unfolding Processor: loop length: 3 terms: length(cons(N,n__zeros())) s(length(activate(n__zeros()))) s(length(zeros())) context: s([]) substitution: N -> 0() Qed