YES TRS: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) terms(X) -> n__terms(X) s(X) -> n__s(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(X) -> X max/plus interpretations on N: terms_A(x1) = max{12, 9 + x1} terms#_A(x1) = max{12, 9 + x1} cons_A(x1,x2) = max{0, 2 + x1, x2} cons#_A(x1,x2) = max{0, 2 + x1, x2} recip_A(x1) = max{6, x1} recip#_A(x1) = max{6, x1} sqr_A(x1) = max{10, 5 + x1} sqr#_A(x1) = max{10, 5 + x1} n__terms_A(x1) = max{12, 9 + x1} n__terms#_A(x1) = max{12, 9 + x1} n__s_A(x1) = max{3, x1} n__s#_A(x1) = max{3, x1} 0_A = 1 0#_A = 1 s_A(x1) = max{3, x1} s#_A(x1) = max{3, x1} add_A(x1,x2) = max{9, x1, x2} add#_A(x1,x2) = max{9, x1, x2} dbl_A(x1) = max{4, 1 + x1} dbl#_A(x1) = max{4, 1 + x1} first_A(x1,x2) = max{8, 4 + x1, 2 + x2} first#_A(x1,x2) = max{8, 4 + x1, 2 + x2} nil_A = 0 nil#_A = 0 n__first_A(x1,x2) = max{8, 4 + x1, 2 + x2} n__first#_A(x1,x2) = max{8, 4 + x1, 2 + x2} activate_A(x1) = max{1, x1} activate#_A(x1) = max{1, x1} precedence: activate > terms = 0 = first > cons = recip = sqr = n__terms = n__first > add = dbl > s > n__s = nil