YES # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: H(F(x,y)) -> F(H(R(x)),y) F(x,K(y,z)) -> G(P(y),Q(z,x)) H(Q(x,y)) -> Q(x,H(R(y))) Q(x,H(R(y))) -> H(Q(x,y)) H(G(x,y)) -> G(x,H(y)) Let C be the following subset of R: H(F(x,y)) -> F(H(R(x)),y) F(x,K(y,z)) -> G(P(y),Q(z,x)) H(Q(x,y)) -> Q(x,H(R(y))) Q(x,H(R(y))) -> H(Q(x,y)) H(G(x,y)) -> G(x,H(y)) The parallel critical pair system PCPS(R,C) is: (empty) The TRS R is locally confluent and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # Parallel rule labeling (Zankl et al. 2015). Consider the left-linear TRS R: H(F(x,y)) -> F(H(R(x)),y) F(x,K(y,z)) -> G(P(y),Q(z,x)) H(Q(x,y)) -> Q(x,H(R(y))) Q(x,H(R(y))) -> H(Q(x,y)) H(G(x,y)) -> G(x,H(y)) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(H(F(x,y)) -> F(H(R(x)),y)) = 3 phi(F(x,K(y,z)) -> G(P(y),Q(z,x))) = 2 phi(H(Q(x,y)) -> Q(x,H(R(y)))) = 1 phi(Q(x,H(R(y))) -> H(Q(x,y))) = 1 phi(H(G(x,y)) -> G(x,H(y))) = 1 psi(H(F(x,y)) -> F(H(R(x)),y)) = 3 psi(F(x,K(y,z)) -> G(P(y),Q(z,x))) = 2 psi(H(Q(x,y)) -> Q(x,H(R(y)))) = 1 psi(Q(x,H(R(y))) -> H(Q(x,y))) = 1 psi(H(G(x,y)) -> G(x,H(y))) = 3