YES # Compositional parallel rule labeling (Shintani and Hirokawa 2022). Consider the left-linear TRS R: f(a(),a()) -> b() a() -> a'() f(a'(),x) -> f(x,x) f(x,a'()) -> f(x,x) f(a'(),a'()) -> b() b() -> f(a'(),a'()) Let C be the following subset of R: (empty) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(f(a(),a()) -> b()) = 5 phi(a() -> a'()) = 3 phi(f(a'(),x) -> f(x,x)) = 4 phi(f(x,a'()) -> f(x,x)) = 4 phi(f(a'(),a'()) -> b()) = 1 phi(b() -> f(a'(),a'())) = 1 psi(f(a(),a()) -> b()) = 2 psi(a() -> a'()) = 6 psi(f(a'(),x) -> f(x,x)) = 1 psi(f(x,a'()) -> f(x,x)) = 1 psi(f(a'(),a'()) -> b()) = 3 psi(b() -> f(a'(),a'())) = 1 Therefore, the confluence of R follows from that of C. # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: (empty) Let C be the following subset of R: (empty) The parallel critical pair system PCPS(R,C) is: (empty) All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # emptiness The empty TRS is confluent.