YES # Compositional parallel rule labeling (Shintani and Hirokawa 2022). Consider the left-linear TRS R: if(true(),x,y) -> x if(false(),x,y) -> y -(s(x),s(y)) -> -(x,y) -(x,0()) -> x -(0(),x) -> 0() <(s(x),s(y)) -> <(x,y) <(0(),s(x)) -> true() <(x,0()) -> false() mod(0(),y) -> 0() mod(x,s(y)) -> if(<(x,s(y)),x,mod(-(x,s(y)),s(y))) mod(x,0()) -> x gcd(x,y) -> gcd(y,mod(x,y)) gcd(x,0()) -> x gcd(0(),x) -> x Let C be the following subset of R: (empty) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(if(true(),x,y) -> x) = 1 phi(if(false(),x,y) -> y) = 1 phi(-(s(x),s(y)) -> -(x,y)) = 1 phi(-(x,0()) -> x) = 1 phi(-(0(),x) -> 0()) = 1 phi(<(s(x),s(y)) -> <(x,y)) = 1 phi(<(0(),s(x)) -> true()) = 1 phi(<(x,0()) -> false()) = 1 phi(mod(0(),y) -> 0()) = 4 phi(mod(x,s(y)) -> if(<(x,s(y)),x,mod(-(x,s(y)),s(y)))) = 4 phi(mod(x,0()) -> x) = 5 phi(gcd(x,y) -> gcd(y,mod(x,y))) = 4 phi(gcd(x,0()) -> x) = 6 phi(gcd(0(),x) -> x) = 6 psi(if(true(),x,y) -> x) = 3 psi(if(false(),x,y) -> y) = 1 psi(-(s(x),s(y)) -> -(x,y)) = 1 psi(-(x,0()) -> x) = 1 psi(-(0(),x) -> 0()) = 1 psi(<(s(x),s(y)) -> <(x,y)) = 1 psi(<(0(),s(x)) -> true()) = 2 psi(<(x,0()) -> false()) = 1 psi(mod(0(),y) -> 0()) = 2 psi(mod(x,s(y)) -> if(<(x,s(y)),x,mod(-(x,s(y)),s(y)))) = 2 psi(mod(x,0()) -> x) = 1 psi(gcd(x,y) -> gcd(y,mod(x,y))) = 5 psi(gcd(x,0()) -> x) = 3 psi(gcd(0(),x) -> x) = 3 Therefore, the confluence of R follows from that of C. # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: (empty) Let C be the following subset of R: (empty) The parallel critical pair system PCPS(R,C) is: (empty) All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # emptiness The empty TRS is confluent.