YES Problem: -(x,s(y)) -> -(d(x),y) d(s(x)) -> x -(s(x),s(y)) -> -(x,y) -(d(x),y) -> -(x,s(y)) Proof: AT confluence processor Complete TRS T' of input TRS: d(s(x)) -> x -(s(x),s(y)) -> -(x,y) -(x,s(y)) -> -(d(x),y) -(d(x),y) -> -(x,s(y)) T' = (P union S) with TRS P:-(x,s(y)) -> -(d(x),y) -(d(x),y) -> -(x,s(y)) TRS S:d(s(x)) -> x -(s(x),s(y)) -> -(x,y) S is linear and P is reversible. CP(S,S) = CP(S,P union P^-1) = -(x118,y) = -(s(x118),s(y)), -(x119,y) = -(d(s(x119)),y) CP(P union P^-1,S) = -(d(s(x)),y) = -(x,y) We have to check termination of S: Matrix Interpretation Processor: dim=1 interpretation: [-](x0, x1) = x0 + x1, [s](x0) = x0, [d](x0) = x0 + 1 orientation: d(s(x)) = x + 1 >= x = x -(s(x),s(y)) = x + y >= x + y = -(x,y) problem: -(s(x),s(y)) -> -(x,y) Matrix Interpretation Processor: dim=1 interpretation: [-](x0, x1) = 3x0 + 6x1, [s](x0) = x0 + 3 orientation: -(s(x),s(y)) = 3x + 6y + 27 >= 3x + 6y = -(x,y) problem: Qed