NO Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x) (REPLACEMENT-MAP (P 1) (Q 1) (a 1) (b 1) (c 1) (p 1) (q 1) (fSNonEmpty) ) (RULES P(p(x)) -> x P(x) -> Q(Q(p(x))) Q(p(q(x))) -> q(p(Q(x))) Q(q(x)) -> x a(b(x)) -> b(c(x)) a(c(x)) -> c(a(x)) b(b(x)) -> a(c(x)) c(b(x)) -> b(c(x)) c(b(x)) -> c(c(x)) c(c(x)) -> c(b(x)) p(P(x)) -> x p(Q(Q(x))) -> Q(Q(p(x))) p(p(x)) -> q(q(x)) q(Q(x)) -> x q(q(p(x))) -> p(q(q(x))) ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1: Problem 1: Not CS-TRS Procedure: R is not a CS-TRS Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x) (REPLACEMENT-MAP (P 1) (Q 1) (a 1) (b 1) (c 1) (p 1) (q 1) (fSNonEmpty) ) (RULES P(p(x)) -> x P(x) -> Q(Q(p(x))) Q(p(q(x))) -> q(p(Q(x))) Q(q(x)) -> x a(b(x)) -> b(c(x)) a(c(x)) -> c(a(x)) b(b(x)) -> a(c(x)) c(b(x)) -> b(c(x)) c(b(x)) -> c(c(x)) c(c(x)) -> c(b(x)) p(P(x)) -> x p(Q(Q(x))) -> Q(Q(p(x))) p(p(x)) -> q(q(x)) q(Q(x)) -> x q(q(p(x))) -> p(q(q(x))) ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Ordered by Num of Vars and Symbs Procedure: -> Rules: P(p(x)) -> x P(x) -> Q(Q(p(x))) Q(p(q(x))) -> q(p(Q(x))) Q(q(x)) -> x a(b(x)) -> b(c(x)) a(c(x)) -> c(a(x)) b(b(x)) -> a(c(x)) c(b(x)) -> b(c(x)) c(b(x)) -> c(c(x)) c(c(x)) -> c(b(x)) p(P(x)) -> x p(Q(Q(x))) -> Q(Q(p(x))) p(p(x)) -> q(q(x)) q(Q(x)) -> x q(q(p(x))) -> p(q(q(x))) -> Vars: x, x, x, x, x, x, x, x, x, x, x, x, x, x, x -> Rlps: (rule: P(p(x)) -> x, id: 1, possubterms: P(p(x))->[], p(x)->[1]) (rule: P(x) -> Q(Q(p(x))), id: 2, possubterms: P(x)->[]) (rule: Q(p(q(x))) -> q(p(Q(x))), id: 3, possubterms: Q(p(q(x)))->[], p(q(x))->[1], q(x)->[1, 1]) (rule: Q(q(x)) -> x, id: 4, possubterms: Q(q(x))->[], q(x)->[1]) (rule: a(b(x)) -> b(c(x)), id: 5, possubterms: a(b(x))->[], b(x)->[1]) (rule: a(c(x)) -> c(a(x)), id: 6, possubterms: a(c(x))->[], c(x)->[1]) (rule: b(b(x)) -> a(c(x)), id: 7, possubterms: b(b(x))->[], b(x)->[1]) (rule: c(b(x)) -> b(c(x)), id: 8, possubterms: c(b(x))->[], b(x)->[1]) (rule: c(b(x)) -> c(c(x)), id: 9, possubterms: c(b(x))->[], b(x)->[1]) (rule: c(c(x)) -> c(b(x)), id: 10, possubterms: c(c(x))->[], c(x)->[1]) (rule: p(P(x)) -> x, id: 11, possubterms: p(P(x))->[], P(x)->[1]) (rule: p(Q(Q(x))) -> Q(Q(p(x))), id: 12, possubterms: p(Q(Q(x)))->[], Q(Q(x))->[1], Q(x)->[1, 1]) (rule: p(p(x)) -> q(q(x)), id: 13, possubterms: p(p(x))->[], p(x)->[1]) (rule: q(Q(x)) -> x, id: 14, possubterms: q(Q(x))->[], Q(x)->[1]) (rule: q(q(p(x))) -> p(q(q(x))), id: 15, possubterms: q(q(p(x)))->[], q(p(x))->[1], p(x)->[1, 1]) -> Unifications: (R1 unifies with R11 at p: [1], l: P(p(x)), lp: p(x), sig: {x -> P(x')}, l': p(P(x')), r: x, r': x') (R1 unifies with R12 at p: [1], l: P(p(x)), lp: p(x), sig: {x -> Q(Q(x'))}, l': p(Q(Q(x'))), r: x, r': Q(Q(p(x')))) (R1 unifies with R13 at p: [1], l: P(p(x)), lp: p(x), sig: {x -> p(x')}, l': p(p(x')), r: x, r': q(q(x'))) (R2 unifies with R1 at p: [], l: P(x), lp: P(x), sig: {x -> p(x')}, l': P(p(x')), r: Q(Q(p(x))), r': x') (R3 unifies with R14 at p: [1,1], l: Q(p(q(x))), lp: q(x), sig: {x -> Q(x')}, l': q(Q(x')), r: q(p(Q(x))), r': x') (R3 unifies with R15 at p: [1,1], l: Q(p(q(x))), lp: q(x), sig: {x -> q(p(x'))}, l': q(q(p(x'))), r: q(p(Q(x))), r': p(q(q(x')))) (R4 unifies with R14 at p: [1], l: Q(q(x)), lp: q(x), sig: {x -> Q(x')}, l': q(Q(x')), r: x, r': x') (R4 unifies with R15 at p: [1], l: Q(q(x)), lp: q(x), sig: {x -> q(p(x'))}, l': q(q(p(x'))), r: x, r': p(q(q(x')))) (R5 unifies with R7 at p: [1], l: a(b(x)), lp: b(x), sig: {x -> b(x')}, l': b(b(x')), r: b(c(x)), r': a(c(x'))) (R6 unifies with R8 at p: [1], l: a(c(x)), lp: c(x), sig: {x -> b(x')}, l': c(b(x')), r: c(a(x)), r': b(c(x'))) (R6 unifies with R9 at p: [1], l: a(c(x)), lp: c(x), sig: {x -> b(x')}, l': c(b(x')), r: c(a(x)), r': c(c(x'))) (R6 unifies with R10 at p: [1], l: a(c(x)), lp: c(x), sig: {x -> c(x')}, l': c(c(x')), r: c(a(x)), r': c(b(x'))) (R7 unifies with R7 at p: [1], l: b(b(x)), lp: b(x), sig: {x -> b(x')}, l': b(b(x')), r: a(c(x)), r': a(c(x'))) (R8 unifies with R7 at p: [1], l: c(b(x)), lp: b(x), sig: {x -> b(x')}, l': b(b(x')), r: b(c(x)), r': a(c(x'))) (R9 unifies with R8 at p: [], l: c(b(x)), lp: c(b(x)), sig: {x -> x'}, l': c(b(x')), r: c(c(x)), r': b(c(x'))) (R9 unifies with R7 at p: [1], l: c(b(x)), lp: b(x), sig: {x -> b(x')}, l': b(b(x')), r: c(c(x)), r': a(c(x'))) (R10 unifies with R8 at p: [1], l: c(c(x)), lp: c(x), sig: {x -> b(x')}, l': c(b(x')), r: c(b(x)), r': b(c(x'))) (R10 unifies with R9 at p: [1], l: c(c(x)), lp: c(x), sig: {x -> b(x')}, l': c(b(x')), r: c(b(x)), r': c(c(x'))) (R10 unifies with R10 at p: [1], l: c(c(x)), lp: c(x), sig: {x -> c(x')}, l': c(c(x')), r: c(b(x)), r': c(b(x'))) (R11 unifies with R1 at p: [1], l: p(P(x)), lp: P(x), sig: {x -> p(x')}, l': P(p(x')), r: x, r': x') (R11 unifies with R2 at p: [1], l: p(P(x)), lp: P(x), sig: {x -> x'}, l': P(x'), r: x, r': Q(Q(p(x')))) (R12 unifies with R3 at p: [1,1], l: p(Q(Q(x))), lp: Q(x), sig: {x -> p(q(x'))}, l': Q(p(q(x'))), r: Q(Q(p(x))), r': q(p(Q(x')))) (R12 unifies with R4 at p: [1,1], l: p(Q(Q(x))), lp: Q(x), sig: {x -> q(x')}, l': Q(q(x')), r: Q(Q(p(x))), r': x') (R13 unifies with R11 at p: [1], l: p(p(x)), lp: p(x), sig: {x -> P(x')}, l': p(P(x')), r: q(q(x)), r': x') (R13 unifies with R12 at p: [1], l: p(p(x)), lp: p(x), sig: {x -> Q(Q(x'))}, l': p(Q(Q(x'))), r: q(q(x)), r': Q(Q(p(x')))) (R13 unifies with R13 at p: [1], l: p(p(x)), lp: p(x), sig: {x -> p(x')}, l': p(p(x')), r: q(q(x)), r': q(q(x'))) (R14 unifies with R3 at p: [1], l: q(Q(x)), lp: Q(x), sig: {x -> p(q(x'))}, l': Q(p(q(x'))), r: x, r': q(p(Q(x')))) (R14 unifies with R4 at p: [1], l: q(Q(x)), lp: Q(x), sig: {x -> q(x')}, l': Q(q(x')), r: x, r': x') (R15 unifies with R11 at p: [1,1], l: q(q(p(x))), lp: p(x), sig: {x -> P(x')}, l': p(P(x')), r: p(q(q(x))), r': x') (R15 unifies with R12 at p: [1,1], l: q(q(p(x))), lp: p(x), sig: {x -> Q(Q(x'))}, l': p(Q(Q(x'))), r: p(q(q(x))), r': Q(Q(p(x')))) (R15 unifies with R13 at p: [1,1], l: q(q(p(x))), lp: p(x), sig: {x -> p(x')}, l': p(p(x')), r: p(q(q(x))), r': q(q(x'))) -> Critical pairs info: => Not trivial, Not overlay, Proper, NW0, N1 => Trivial, Not overlay, Proper, NW0, N2 => Trivial, Not overlay, Proper, NW0, N3 => Trivial, Not overlay, Proper, NW0, N4 => Not trivial, Overlay, Proper, NW0, N5 => Trivial, Not overlay, Proper, NW0, N6 => Not trivial, Not overlay, Proper, NW0, N7 => Not trivial, Not overlay, Proper, NW0, N8 => Not trivial, Not overlay, Proper, NW0, N9 => Not trivial, Overlay, Proper, NW0, N10 => Not trivial, Not overlay, Proper, NW0, N11 => Not trivial, Not overlay, Proper, NW0, N12 => Not trivial, Not overlay, Proper, NW0, N13 => Not trivial, Not overlay, Proper, NW0, N14 => Not trivial, Not overlay, Proper, NW0, N15 => Not trivial, Not overlay, Proper, NW0, N16 => Not trivial, Not overlay, Proper, NW0, N17 => Not trivial, Not overlay, Proper, NW0, N18 => Not trivial, Not overlay, Proper, NW0, N19 => Not trivial, Not overlay, Proper, NW0, N20 => Not trivial, Not overlay, Proper, NW0, N21 => Not trivial, Not overlay, Proper, NW0, N22 => Not trivial, Not overlay, Proper, NW0, N23 => Not trivial, Not overlay, Proper, NW0, N24 => Not trivial, Not overlay, Proper, NW0, N25 => Not trivial, Not overlay, Proper, NW0, N26 => Not trivial, Not overlay, Proper, NW0, N27 => Not trivial, Not overlay, Proper, NW0, N28 => Not trivial, Not overlay, Proper, NW0, N29 => Not trivial, Not overlay, Proper, NW0, N30 => Not trivial, Not overlay, Proper, NW0, N31 -> Problem conclusions: Left linear, Right linear, Linear Not weakly orthogonal, Not almost orthogonal, Not orthogonal Not Huet-Levy confluent, Not Newman confluent R is a TRS Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x x') (REPLACEMENT-MAP (P 1) (Q 1) (a 1) (b 1) (c 1) (p 1) (q 1) (fSNonEmpty) ) (RULES P(p(x)) -> x P(x) -> Q(Q(p(x))) Q(p(q(x))) -> q(p(Q(x))) Q(q(x)) -> x a(b(x)) -> b(c(x)) a(c(x)) -> c(a(x)) b(b(x)) -> a(c(x)) c(b(x)) -> b(c(x)) c(b(x)) -> c(c(x)) c(c(x)) -> c(b(x)) p(P(x)) -> x p(Q(Q(x))) -> Q(Q(p(x))) p(p(x)) -> q(q(x)) q(Q(x)) -> x q(q(p(x))) -> p(q(q(x))) ) Critical Pairs: => Not trivial, Not overlay, Proper, NW0, N17 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: No Convergence InfChecker Procedure: Infeasible convergence? YES Problem 1: Infeasibility Problem: [(VAR vNonEmpty x x1 vNonEmpty z0) (STRATEGY CONTEXTSENSITIVE (P 1) (Q 1) (a 1) (b 1) (c 1) (p 1) (q 1) (c_x1) (fSNonEmpty) ) (RULES P(p(x)) -> x P(x) -> Q(Q(p(x))) Q(p(q(x))) -> q(p(Q(x))) Q(q(x)) -> x a(b(x)) -> b(c(x)) a(c(x)) -> c(a(x)) b(b(x)) -> a(c(x)) c(b(x)) -> b(c(x)) c(b(x)) -> c(c(x)) c(c(x)) -> c(b(x)) p(P(x)) -> x p(Q(Q(x))) -> Q(Q(p(x))) p(p(x)) -> q(q(x)) q(Q(x)) -> x q(q(p(x))) -> p(q(q(x))) )] Infeasibility Conditions: a(a(c(c_x1))) ->* z0, b(c(b(c_x1))) ->* z0 Problem 1: Obtaining a model using AGES: -> Theory (Usable Rules): a(b(x)) -> b(c(x)) a(c(x)) -> c(a(x)) b(b(x)) -> a(c(x)) c(b(x)) -> b(c(x)) c(b(x)) -> c(c(x)) c(c(x)) -> c(b(x)) -> AGES Output: The problem is infeasible. The problem is not confluent.