NO Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x) (REPLACEMENT-MAP (f 1) (g 1) (fSNonEmpty) (h 1) ) (RULES f(g(x)) -> g(f(f(x))) f(h(x)) -> h(h(f(x))) f(x) -> x g(x) -> x ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1: Problem 1: Not CS-TRS Procedure: R is not a CS-TRS Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x) (REPLACEMENT-MAP (f 1) (g 1) (fSNonEmpty) (h 1) ) (RULES f(g(x)) -> g(f(f(x))) f(h(x)) -> h(h(f(x))) f(x) -> x g(x) -> x ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Procedure: -> Rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(h(f(x))) f(x) -> x g(x) -> x -> Vars: x, x, x, x -> Rlps: (rule: f(g(x)) -> g(f(f(x))), id: 1, possubterms: f(g(x))->[], g(x)->[1]) (rule: f(h(x)) -> h(h(f(x))), id: 2, possubterms: f(h(x))->[], h(x)->[1]) (rule: f(x) -> x, id: 3, possubterms: f(x)->[]) (rule: g(x) -> x, id: 4, possubterms: g(x)->[]) -> Unifications: (R1 unifies with R4 at p: [1], l: f(g(x)), lp: g(x), sig: {x -> x'}, l': g(x'), r: g(f(f(x))), r': x') (R3 unifies with R1 at p: [], l: f(x), lp: f(x), sig: {x -> g(x')}, l': f(g(x')), r: x, r': g(f(f(x')))) (R3 unifies with R2 at p: [], l: f(x), lp: f(x), sig: {x -> h(x')}, l': f(h(x')), r: x, r': h(h(f(x')))) -> Critical pairs info: => Not trivial, Overlay, Proper, NW0, N1 => Not trivial, Not overlay, Proper, NW0, N2 => Not trivial, Overlay, Proper, NW0, N3 -> Problem conclusions: Left linear, Right linear, Linear Not weakly orthogonal, Not almost orthogonal, Not orthogonal Not Huet-Levy confluent, Not Newman confluent R is a TRS Problem 1: No Convergence Brute Force Procedure: -> Rewritings: s: h(h(f(x'))) Nodes: [0,1] Edges: [(0,1)] ID: 0 => ('h(h(f(x')))', D0) ID: 1 => ('h(h(x'))', D1, R3, P[1, 1], S{x6 -> x'}), NR: 'x'' t: h(x') Nodes: [0] Edges: [] ID: 0 => ('h(x')', D0) h(h(f(x'))) ->* no union *<- h(x') "Not joinable" The problem is not confluent.