YES Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x y z) (REPLACEMENT-MAP (from 1) (sel 1, 2) (0) (: 1, 2) (fSNonEmpty) (s 1) ) (RULES from(x) -> :(x,from(s(x))) sel(0,:(y,z)) -> y sel(s(x),:(y,z)) -> sel(x,z) ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1: Problem 1: Modular Confluence Combinations Decomposition Procedure: TRS combination: {from(x) -> :(x,from(s(x)))} {sel(0,:(y,z)) -> y sel(s(x),:(y,z)) -> sel(x,z)} Not disjoint Constructor-sharing Not composable Left linear Not layer-preserving TRS1 Just (VAR x) (STRATEGY CONTEXTSENSITIVE (from 1) (: 1 2) (s 1) ) (RULES from(x) -> :(x,from(s(x))) ) TRS2 Just (VAR x y z) (STRATEGY CONTEXTSENSITIVE (sel 1 2) (0) (: 1 2) (s 1) ) (RULES sel(0,:(y,z)) -> y sel(s(x),:(y,z)) -> sel(x,z) ) The problem is decomposed in 2 subproblems. Problem 1.1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x) (REPLACEMENT-MAP (from 1) (: 1, 2) (s 1) ) (RULES from(x) -> :(x,from(s(x))) ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1.1: Problem 1.1: Not CS-TRS Procedure: R is not a CS-TRS Problem 1.1: Linearity Procedure: Linear? NO Problem 1.1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x) (REPLACEMENT-MAP (from 1) (: 1, 2) (s 1) ) (RULES from(x) -> :(x,from(s(x))) ) Linear:NO ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Procedure: -> Rules: from(x) -> :(x,from(s(x))) -> Vars: x -> Rlps: (rule: from(x) -> :(x,from(s(x))), id: 1, possubterms: from(x)->[]) -> Unifications: -> Critical pairs info: -> Problem conclusions: Left linear, Not right linear, Not linear Weakly orthogonal, Almost orthogonal, Orthogonal Huet-Levy confluent, Not Newman confluent R is a TRS The problem is confluent. Problem 1.2: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x y z) (REPLACEMENT-MAP (sel 1, 2) (0) (: 1, 2) (s 1) ) (RULES sel(0,:(y,z)) -> y sel(s(x),:(y,z)) -> sel(x,z) ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1.2: Problem 1.2: Not CS-TRS Procedure: R is not a CS-TRS Problem 1.2: Linearity Procedure: Linear? YES Problem 1.2: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x y z) (REPLACEMENT-MAP (sel 1, 2) (0) (: 1, 2) (s 1) ) (RULES sel(0,:(y,z)) -> y sel(s(x),:(y,z)) -> sel(x,z) ) Linear:YES ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Procedure: -> Rules: sel(0,:(y,z)) -> y sel(s(x),:(y,z)) -> sel(x,z) -> Vars: y, z, x, y, z -> Rlps: (rule: sel(0,:(y,z)) -> y, id: 1, possubterms: sel(0,:(y,z))->[], 0->[1], :(y,z)->[2]) (rule: sel(s(x),:(y,z)) -> sel(x,z), id: 2, possubterms: sel(s(x),:(y,z))->[], s(x)->[1], :(y,z)->[2]) -> Unifications: -> Critical pairs info: -> Problem conclusions: Left linear, Right linear, Linear Weakly orthogonal, Almost orthogonal, Orthogonal Huet-Levy confluent, Not Newman confluent R is a TRS The problem is confluent.