NO Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x y) (REPLACEMENT-MAP (* 1, 2) (+ 1, 2) (- 1, 2) (p 1) (s 1) (0) (fSNonEmpty) ) (RULES *(x,p(y)) -> -(*(x,y),x) *(x,s(y)) -> +(*(x,y),x) *(x,0) -> 0 +(x,p(y)) -> p(+(x,y)) +(x,s(y)) -> s(+(x,y)) +(x,0) -> x -(x,p(y)) -> s(-(x,y)) -(x,s(y)) -> p(-(x,y)) -(x,0) -> x p(s(x)) -> x s(p(x)) -> x ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1: Problem 1: Not CS-TRS Procedure: R is not a CS-TRS Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x y) (REPLACEMENT-MAP (* 1, 2) (+ 1, 2) (- 1, 2) (p 1) (s 1) (0) (fSNonEmpty) ) (RULES *(x,p(y)) -> -(*(x,y),x) *(x,s(y)) -> +(*(x,y),x) *(x,0) -> 0 +(x,p(y)) -> p(+(x,y)) +(x,s(y)) -> s(+(x,y)) +(x,0) -> x -(x,p(y)) -> s(-(x,y)) -(x,s(y)) -> p(-(x,y)) -(x,0) -> x p(s(x)) -> x s(p(x)) -> x ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Procedure: -> Rules: *(x,p(y)) -> -(*(x,y),x) *(x,s(y)) -> +(*(x,y),x) *(x,0) -> 0 +(x,p(y)) -> p(+(x,y)) +(x,s(y)) -> s(+(x,y)) +(x,0) -> x -(x,p(y)) -> s(-(x,y)) -(x,s(y)) -> p(-(x,y)) -(x,0) -> x p(s(x)) -> x s(p(x)) -> x -> Vars: x, y, x, y, x, x, y, x, y, x, x, y, x, y, x, x, x -> Rlps: (rule: *(x,p(y)) -> -(*(x,y),x), id: 1, possubterms: *(x,p(y))->[], p(y)->[2]) (rule: *(x,s(y)) -> +(*(x,y),x), id: 2, possubterms: *(x,s(y))->[], s(y)->[2]) (rule: *(x,0) -> 0, id: 3, possubterms: *(x,0)->[], 0->[2]) (rule: +(x,p(y)) -> p(+(x,y)), id: 4, possubterms: +(x,p(y))->[], p(y)->[2]) (rule: +(x,s(y)) -> s(+(x,y)), id: 5, possubterms: +(x,s(y))->[], s(y)->[2]) (rule: +(x,0) -> x, id: 6, possubterms: +(x,0)->[], 0->[2]) (rule: -(x,p(y)) -> s(-(x,y)), id: 7, possubterms: -(x,p(y))->[], p(y)->[2]) (rule: -(x,s(y)) -> p(-(x,y)), id: 8, possubterms: -(x,s(y))->[], s(y)->[2]) (rule: -(x,0) -> x, id: 9, possubterms: -(x,0)->[], 0->[2]) (rule: p(s(x)) -> x, id: 10, possubterms: p(s(x))->[], s(x)->[1]) (rule: s(p(x)) -> x, id: 11, possubterms: s(p(x))->[], p(x)->[1]) -> Unifications: (R1 unifies with R10 at p: [2], l: *(x,p(y)), lp: p(y), sig: {y -> s(x')}, l': p(s(x')), r: -(*(x,y),x), r': x') (R2 unifies with R11 at p: [2], l: *(x,s(y)), lp: s(y), sig: {y -> p(x')}, l': s(p(x')), r: +(*(x,y),x), r': x') (R4 unifies with R10 at p: [2], l: +(x,p(y)), lp: p(y), sig: {y -> s(x')}, l': p(s(x')), r: p(+(x,y)), r': x') (R5 unifies with R11 at p: [2], l: +(x,s(y)), lp: s(y), sig: {y -> p(x')}, l': s(p(x')), r: s(+(x,y)), r': x') (R7 unifies with R10 at p: [2], l: -(x,p(y)), lp: p(y), sig: {y -> s(x')}, l': p(s(x')), r: s(-(x,y)), r': x') (R8 unifies with R11 at p: [2], l: -(x,s(y)), lp: s(y), sig: {y -> p(x')}, l': s(p(x')), r: p(-(x,y)), r': x') (R10 unifies with R11 at p: [1], l: p(s(x)), lp: s(x), sig: {x -> p(x')}, l': s(p(x')), r: x, r': x') (R11 unifies with R10 at p: [1], l: s(p(x)), lp: p(x), sig: {x -> s(x')}, l': p(s(x')), r: x, r': x') -> Critical pairs info: <-(x,x'),s(-(x,s(x')))> => Not trivial, Not overlay, Proper, NW0, N1 <*(x,x'),+(*(x,p(x')),x)> => Not trivial, Not overlay, Proper, NW0, N2 <+(x,x'),s(+(x,p(x')))> => Not trivial, Not overlay, Proper, NW0, N3 <*(x,x'),-(*(x,s(x')),x)> => Not trivial, Not overlay, Proper, NW0, N4 <-(x,x'),p(-(x,p(x')))> => Not trivial, Not overlay, Proper, NW0, N5 => Trivial, Not overlay, Proper, NW0, N6 => Trivial, Not overlay, Proper, NW0, N7 <+(x,x'),p(+(x,s(x')))> => Not trivial, Not overlay, Proper, NW0, N8 -> Problem conclusions: Left linear, Not right linear, Not linear Not weakly orthogonal, Not almost orthogonal, Not orthogonal Not Huet-Levy confluent, Not Newman confluent R is a TRS Problem 1: No Convergence Brute Force Procedure: -> Rewritings: s: *(x,x') Nodes: [0] Edges: [] ID: 0 => ('*(x,x')', D0) t: +(*(x,p(x')),x) Nodes: [0,1] Edges: [(0,1)] ID: 0 => ('+(*(x,p(x')),x)', D0) ID: 1 => ('+(-(*(x,x'),x),x)', D1, R1, P[1], S{x5 -> x, x6 -> x'}), NR: '-(*(x,x'),x)' *(x,x') ->* no union *<- +(*(x,p(x')),x) "Not joinable" The problem is not confluent.