YES Problem 1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR vNonEmpty x y) (REPLACEMENT-MAP (+ 1, 2) (- 1, 2) (0) (fSNonEmpty) (s 1) ) (RULES +(x,0) -> x +(x,s(y)) -> s(+(x,y)) -(0,x) -> 0 -(s(x),s(y)) -> -(x,y) -(x,0) -> x ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1: Problem 1: Modular Confluence Combinations Decomposition Procedure: TRS combination: {+(x,0) -> x +(x,s(y)) -> s(+(x,y))} {-(0,x) -> 0 -(s(x),s(y)) -> -(x,y) -(x,0) -> x} Not disjoint Constructor-sharing Not composable Left linear Not layer-preserving TRS1 Just (VAR x y) (STRATEGY CONTEXTSENSITIVE (+ 1 2) (0) (s 1) ) (RULES +(x,0) -> x +(x,s(y)) -> s(+(x,y)) ) TRS2 Just (VAR x y) (STRATEGY CONTEXTSENSITIVE (- 1 2) (0) (s 1) ) (RULES -(0,x) -> 0 -(s(x),s(y)) -> -(x,y) -(x,0) -> x ) The problem is decomposed in 2 subproblems. Problem 1.1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x y) (REPLACEMENT-MAP (+ 1, 2) (0) (s 1) ) (RULES +(x,0) -> x +(x,s(y)) -> s(+(x,y)) ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1.1: Problem 1.1: Not CS-TRS Procedure: R is not a CS-TRS Problem 1.1: Linearity Procedure: Linear? YES Problem 1.1: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x y) (REPLACEMENT-MAP (+ 1, 2) (0) (s 1) ) (RULES +(x,0) -> x +(x,s(y)) -> s(+(x,y)) ) Linear:YES ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Procedure: -> Rules: +(x,0) -> x +(x,s(y)) -> s(+(x,y)) -> Vars: x, x, y -> Rlps: (rule: +(x,0) -> x, id: 1, possubterms: +(x,0)->[], 0->[2]) (rule: +(x,s(y)) -> s(+(x,y)), id: 2, possubterms: +(x,s(y))->[], s(y)->[2]) -> Unifications: -> Critical pairs info: -> Problem conclusions: Left linear, Right linear, Linear Weakly orthogonal, Almost orthogonal, Orthogonal Huet-Levy confluent, Not Newman confluent R is a TRS The problem is confluent. Problem 1.2: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x y) (REPLACEMENT-MAP (- 1, 2) (0) (s 1) ) (RULES -(0,x) -> 0 -(s(x),s(y)) -> -(x,y) -(x,0) -> x ) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Problem 1.2: Problem 1.2: Not CS-TRS Procedure: R is not a CS-TRS Problem 1.2: Linearity Procedure: Linear? YES Problem 1.2: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Confluence Problem: (VAR x y) (REPLACEMENT-MAP (- 1, 2) (0) (s 1) ) (RULES -(0,x) -> 0 -(s(x),s(y)) -> -(x,y) -(x,0) -> x ) Linear:YES ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Huet Levy Procedure: -> Rules: -(0,x) -> 0 -(s(x),s(y)) -> -(x,y) -(x,0) -> x -> Vars: x, x, y, x -> Rlps: (rule: -(0,x) -> 0, id: 1, possubterms: -(0,x)->[], 0->[1]) (rule: -(s(x),s(y)) -> -(x,y), id: 2, possubterms: -(s(x),s(y))->[], s(x)->[1], s(y)->[2]) (rule: -(x,0) -> x, id: 3, possubterms: -(x,0)->[], 0->[2]) -> Unifications: (R3 unifies with R1 at p: [], l: -(x,0), lp: -(x,0), sig: {x -> 0,x' -> 0}, l': -(0,x'), r: x, r': 0) -> Critical pairs info: <0,0> => Trivial, Overlay, Proper, NW0, N1 -> Problem conclusions: Left linear, Right linear, Linear Weakly orthogonal, Almost orthogonal, Not orthogonal Huet-Levy confluent, Not Newman confluent R is a TRS The problem is confluent.