YES # Compositional parallel rule labeling (Shintani and Hirokawa 2022). Consider the left-linear TRS R: a(b(x)) -> c(a(x)) b(a(x)) -> a(b(x)) a(c(x)) -> b(b(x)) b(c(x)) -> c(b(x)) c(b(x)) -> b(a(x)) b(a(x)) -> c(c(x)) c(a(x)) -> b(c(x)) b(a(x)) -> c(c(x)) b(b(x)) -> c(c(x)) Let C be the following subset of R: c(b(x)) -> b(a(x)) b(a(x)) -> c(c(x)) c(a(x)) -> b(c(x)) b(a(x)) -> c(c(x)) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(a(b(x)) -> c(a(x))) = 3 phi(b(a(x)) -> a(b(x))) = 6 phi(a(c(x)) -> b(b(x))) = 3 phi(b(c(x)) -> c(b(x))) = 2 phi(c(b(x)) -> b(a(x))) = 0 phi(b(a(x)) -> c(c(x))) = 0 phi(c(a(x)) -> b(c(x))) = 0 phi(b(a(x)) -> c(c(x))) = 0 phi(b(b(x)) -> c(c(x))) = 2 psi(a(b(x)) -> c(a(x))) = 5 psi(b(a(x)) -> a(b(x))) = 4 psi(a(c(x)) -> b(b(x))) = 5 psi(b(c(x)) -> c(b(x))) = 1 psi(c(b(x)) -> b(a(x))) = 0 psi(b(a(x)) -> c(c(x))) = 0 psi(c(a(x)) -> b(c(x))) = 0 psi(b(a(x)) -> c(c(x))) = 0 psi(b(b(x)) -> c(c(x))) = 1 Therefore, the confluence of R follows from that of C. # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: c(b(x)) -> b(a(x)) b(a(x)) -> c(c(x)) c(a(x)) -> b(c(x)) b(a(x)) -> c(c(x)) Let C be the following subset of R: (empty) The parallel critical pair system PCPS(R,C) is: c(b(a(x1_1))) -> c(c(c(x1_1))) c(b(a(x1_1))) -> b(a(a(x1_1))) All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # emptiness The empty TRS is confluent.