YES # Compositional parallel rule labeling (Shintani and Hirokawa 2022). Consider the left-linear TRS R: a(s(x)) -> s(a(x)) b(a(b(s(x)))) -> a(b(s(a(x)))) b(a(b(b(x)))) -> a(b(a(b(x)))) a(b(a(a(x)))) -> b(a(b(a(x)))) Let C be the following subset of R: a(s(x)) -> s(a(x)) b(a(b(s(x)))) -> a(b(s(a(x)))) b(a(b(b(x)))) -> a(b(a(b(x)))) a(b(a(a(x)))) -> b(a(b(a(x)))) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(a(s(x)) -> s(a(x))) = 0 phi(b(a(b(s(x)))) -> a(b(s(a(x))))) = 0 phi(b(a(b(b(x)))) -> a(b(a(b(x))))) = 0 phi(a(b(a(a(x)))) -> b(a(b(a(x))))) = 0 psi(a(s(x)) -> s(a(x))) = 0 psi(b(a(b(s(x)))) -> a(b(s(a(x))))) = 0 psi(b(a(b(b(x)))) -> a(b(a(b(x))))) = 0 psi(a(b(a(a(x)))) -> b(a(b(a(x))))) = 0 Therefore, the confluence of R follows from that of C. # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: a(s(x)) -> s(a(x)) b(a(b(s(x)))) -> a(b(s(a(x)))) b(a(b(b(x)))) -> a(b(a(b(x)))) a(b(a(a(x)))) -> b(a(b(a(x)))) Let C be the following subset of R: (empty) The parallel critical pair system PCPS(R,C) is: b(a(b(b(a(b(s(x3_1))))))) -> b(a(b(a(b(s(a(x3_1))))))) b(a(b(b(a(b(s(x3_1))))))) -> a(b(a(b(a(b(s(x3_1))))))) b(a(b(b(a(b(b(x3_1))))))) -> b(a(b(a(b(a(b(x3_1))))))) b(a(b(b(a(b(b(x3_1))))))) -> a(b(a(b(a(b(b(x3_1))))))) a(b(a(a(s(x3_1))))) -> a(b(a(s(a(x3_1))))) a(b(a(a(s(x3_1))))) -> b(a(b(a(s(x3_1))))) a(b(a(a(b(a(a(x3_1))))))) -> a(b(a(b(a(b(a(x3_1))))))) a(b(a(a(b(a(a(x3_1))))))) -> b(a(b(a(b(a(a(x3_1))))))) All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # emptiness The empty TRS is confluent.