YES # parallel critical pair closing system (Shintani and Hirokawa 2022, Section 8 in LMCS 2023) Consider the left-linear TRS R: c(c(x)) -> a(c(x)) c(b(x)) -> c(c(x)) b(a(x)) -> c(b(x)) a(b(x)) -> b(a(x)) c(a(x)) -> c(a(x)) b(c(x)) -> c(c(x)) c(c(x)) -> b(c(x)) c(a(x)) -> b(c(x)) Let C be the following subset of R: c(c(x)) -> a(c(x)) c(b(x)) -> c(c(x)) b(a(x)) -> c(b(x)) a(b(x)) -> b(a(x)) b(c(x)) -> c(c(x)) c(c(x)) -> b(c(x)) c(a(x)) -> b(c(x)) The TRS R is left-linear and all parallel critical pairs are joinable by C. Therefore, the confluence of R is equivalent to that of C. # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: c(c(x)) -> a(c(x)) c(b(x)) -> c(c(x)) b(a(x)) -> c(b(x)) a(b(x)) -> b(a(x)) b(c(x)) -> c(c(x)) c(c(x)) -> b(c(x)) c(a(x)) -> b(c(x)) Let C be the following subset of R: c(c(x)) -> a(c(x)) c(b(x)) -> c(c(x)) b(a(x)) -> c(b(x)) a(b(x)) -> b(a(x)) b(c(x)) -> c(c(x)) c(c(x)) -> b(c(x)) c(a(x)) -> b(c(x)) The parallel critical pair system PCPS(R,C) is: (empty) All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # Parallel rule labeling (Zankl et al. 2015). Consider the left-linear TRS R: c(c(x)) -> a(c(x)) c(b(x)) -> c(c(x)) b(a(x)) -> c(b(x)) a(b(x)) -> b(a(x)) b(c(x)) -> c(c(x)) c(c(x)) -> b(c(x)) c(a(x)) -> b(c(x)) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(c(c(x)) -> a(c(x))) = 10 phi(c(b(x)) -> c(c(x))) = 2 phi(b(a(x)) -> c(b(x))) = 3 phi(a(b(x)) -> b(a(x))) = 9 phi(b(c(x)) -> c(c(x))) = 3 phi(c(c(x)) -> b(c(x))) = 8 phi(c(a(x)) -> b(c(x))) = 3 psi(c(c(x)) -> a(c(x))) = 5 psi(c(b(x)) -> c(c(x))) = 1 psi(b(a(x)) -> c(b(x))) = 5 psi(a(b(x)) -> b(a(x))) = 11 psi(b(c(x)) -> c(c(x))) = 7 psi(c(c(x)) -> b(c(x))) = 6 psi(c(a(x)) -> b(c(x))) = 4