YES # Compositional parallel rule labeling (Shintani and Hirokawa 2022). Consider the left-linear TRS R: b(c(x)) -> b(a(x)) c(a(x)) -> b(a(x)) c(a(x)) -> a(b(x)) b(a(x)) -> c(c(x)) a(a(x)) -> a(c(x)) c(c(x)) -> a(b(x)) b(b(x)) -> a(b(x)) Let C be the following subset of R: b(c(x)) -> b(a(x)) c(a(x)) -> a(b(x)) b(a(x)) -> c(c(x)) c(c(x)) -> a(b(x)) b(b(x)) -> a(b(x)) All parallel critical peaks (except C's) are decreasing wrt rule labeling: phi(b(c(x)) -> b(a(x))) = 0 phi(c(a(x)) -> b(a(x))) = 1 phi(c(a(x)) -> a(b(x))) = 0 phi(b(a(x)) -> c(c(x))) = 0 phi(a(a(x)) -> a(c(x))) = 1 phi(c(c(x)) -> a(b(x))) = 0 phi(b(b(x)) -> a(b(x))) = 0 psi(b(c(x)) -> b(a(x))) = 0 psi(c(a(x)) -> b(a(x))) = 1 psi(c(a(x)) -> a(b(x))) = 0 psi(b(a(x)) -> c(c(x))) = 0 psi(a(a(x)) -> a(c(x))) = 1 psi(c(c(x)) -> a(b(x))) = 0 psi(b(b(x)) -> a(b(x))) = 0 Therefore, the confluence of R follows from that of C. # Compositional parallel critical pair system (Shintani and Hirokawa 2022). Consider the left-linear TRS R: b(c(x)) -> b(a(x)) c(a(x)) -> a(b(x)) b(a(x)) -> c(c(x)) c(c(x)) -> a(b(x)) b(b(x)) -> a(b(x)) Let C be the following subset of R: (empty) The parallel critical pair system PCPS(R,C) is: b(c(a(x1_1))) -> b(a(b(x1_1))) b(c(a(x1_1))) -> b(a(a(x1_1))) b(c(c(x1_1))) -> b(a(b(x1_1))) b(c(c(x1_1))) -> b(a(c(x1_1))) c(c(a(x1_1))) -> c(a(b(x1_1))) c(c(a(x1_1))) -> a(b(a(x1_1))) c(c(c(x1_1))) -> c(a(b(x1_1))) c(c(c(x1_1))) -> a(b(c(x1_1))) b(b(c(x1_1))) -> b(b(a(x1_1))) b(b(c(x1_1))) -> a(b(c(x1_1))) b(b(a(x1_1))) -> b(c(c(x1_1))) b(b(a(x1_1))) -> a(b(a(x1_1))) b(b(b(x1_1))) -> b(a(b(x1_1))) b(b(b(x1_1))) -> a(b(b(x1_1))) All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. Therefore, the confluence of R follows from that of C. # emptiness The empty TRS is confluent.