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a  b  s  t  r  a  c  t

Objective:  Predicting  or  prioritizing  the  human  genes  that  cause  disease,  or  “disease  genes”,  is  one  of the
emerging  tasks  in biomedicine  informatics.  Research  on  network-based  approach  to this  problem  is car-
ried out  upon  the  key  assumption  of “the  network-neighbour  of  a disease  gene is  likely to cause  the  same
or a  similar  disease”,  and  mostly  employs  data  regarding  well-known  disease  genes,  using supervised
learning  methods.  This  work  aims  to find  an  effective  method  to exploit  the  disease  gene neighbour-
hood  and  the  integration  of several  useful  omics  data  sources,  which  potentially  enhance  disease  gene
predictions.
Methods: We  have presented  a novel  method  to  effectively  predict  disease  genes  by  exploiting,  in the
semi-supervised  learning  (SSL)  scheme,  data  regarding  both  disease  genes  and  disease  gene neighbours
via protein–protein  interaction  network.  Multiple  proteomic  and  genomic  data  were  integrated  from  six
biological  databases,  including  Universal  Protein  Resource,  Interologous  Interaction  Database,  Reactome,
Gene  Ontology,  Pfam,  and  InterDom,  and  a  gene  expression  dataset.
Results:  By  employing  a 10 times  stratified  10-fold  cross  validation,  the  SSL method  performs  better
than  the  k-nearest  neighbour  method  and  the  support  vector  machines  method  in terms  of  sensitivity
of  85%,  specificity  of  79%,  precision  of  81%,  accuracy  of  82%,  and  a balanced  F-function  of  83%.  The  other
comparative  experimental  evaluations  demonstrate  advantages  of the  proposed  method  given  a small

amount  of labeled  data  with  accuracy  of 78%.  We  have  applied  the  proposed  method  to  detect  572  putative
disease  genes,  which  are  biologically  validated  by  some  indirect  ways.
Conclusion:  Semi-supervised  learning  improved  ability  to  study  disease  genes,  especially  a specific  disease
when  the  known  disease  genes  (as  labeled  data)  are  very  often  limited.  In addition  to  the  computational
improvement,  the analysis  of  predicted  disease  proteins  indicates  that  the  findings  are  beneficial  in

ic  m
deciphering  the  pathogen

. Introduction

One of the ultimate goals of life science is to improve our under-
tanding of the processes related to disease. On the way to this end,
uch work has been focusing on monogenic diseases caused by the

isorder of single genes, and recently on polygenic diseases caused
y disorder of multiple genes in combination with lifestyle and
nvironmental factors. We  are currently still far from unraveling
he molecular mechanisms of most diseases, and thus developing
ffective methods to uncover disease genes remains a great chal-
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

enge. In [1],  the authors reviewed different work on predicting
r prioritizing potential disease genes, varying from distinguishing
etween disease genes and non-disease genes to finding groups of

∗ Corresponding author. Tel.: +39 0461 28 2821; fax: +39 0461 28 2814.
E-mail addresses: nguyen@cosbi.eu (T.-P. Nguyen), bao@jaist.ac.jp (T.-B. Ho).

933-3657/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.artmed.2011.09.003
echanisms.
© 2011 Elsevier B.V. All rights reserved.

genes associated to each disease, and classified their approaches
into three broad categories which are not mutually exclusive.

The first category related to research basing on intrinsic dis-
ease gene properties to systematically study differences between
disease genes and non-disease genes, such as higher conservation
of disease genes with a broader phylogenetic extent [2],  separa-
tion of non-disease genes into two groups of housekeeping and
non-housekeeping genes [3],  extensive correlations between vari-
ous gene properties and disease characteristics [4].  Until recently,
one only knows for sure a relatively limited number of discovered
disease genes and the non-disease genes while in between them
most human genes are yet-unidentified genes, and thus to detect
yet-unidentified genes remains as a challenging task.
es based on semi-supervised learning and protein–protein interaction

The second category related to research basing on links between
candidate genes and disease phenotypes. They exploited various
kinds of phenotypic traits, such as gene expression patterns [5],
gene ontology functional annotation [6],  expression overlap with

dx.doi.org/10.1016/j.artmed.2011.09.003
dx.doi.org/10.1016/j.artmed.2011.09.003
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
mailto:nguyen@cosbi.eu
mailto:bao@jaist.ac.jp
dx.doi.org/10.1016/j.artmed.2011.09.003
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isease-related anatomical regions [7],  or tissue mRNA expression
atterns [8].  Relied on relatively poor annotation of many human
enes, these approaches have not yet identified well candidate
enes for a given disease.

The third category related to research basing on functional relat-
dness of candidate genes. They mostly assumed that genes leading
o the same phenotype were functionally related, and identified
andidate genes as those that had functional relations to known dis-
ase genes [9–14]. Different ways have been considered to exploit
he functional relatedness, notably the network relatedness and
ombination or integration of different types of functional genomic
ata.

Since the last few years, inspired by the findings for yeast
rotein–protein interaction (PPI) networks, several research
roups have been exploiting the human PPI network to predict
uman disease genes via their corresponding product proteins,
hich are intuitively called disease proteins [15]. The key of those

PI-based methods is the exploration of the neighbourhood relat-
dness based on the assumption that “the network-neighbour of

 disease gene is likely to cause the same or a similar disease”
16,9,11,17].

Concerning the neighbourhood relatedness of disease genes,
deker and Sharan pointed out in their excellent review four major
esearch areas [15]: (i) properties of disease genes; (ii) prediction
f disease-causing genes; (iii) identification of disease-related sub-
etworks; and (iv) network-based classification of case-control
tudies. In the area (ii), various supervised learning techniques have
een used to solve the binary classification of disease and non-
isease gene classes, such as decision tree induction in [2],  k-nearest
eighbour (k-NN) in [10], or support vector machines (SVMs) in
18]. In particular, the topological similarity was  usually used in
rotein networks to solve the problem. In the area (iii), disease-
elated sub-networks were identified by heuristic score functions
o predict causing genes of Alzheimer’s disease [19], or by litera-
ure mining and network analysis for inherited cerebellar ataxias
20], or by cluster analysis for heterogeneous diseases [21], among
thers.

Due to the complex nature of disease genes, almost the state-
f-the-art methods in area (ii) focuses on distinction of disease
enes and non-disease genes for a overall view of human genome
hile those in area (iii) focuses on local view of individual diseases.
pparently some recent fundamental work about the modular
ature of genetic diseases [1] or modularity in disease-phenotype
etwork [22] can be the basis for further study in both areas (ii) and
iii).

The new trend of combination and integration of omics data
t various levels has shown advantages in prediction or prioriti-
ation of disease genes. Borgwardt and Kriegel combined graph
ernels for gene expression and human PPI to do the prediction
23]. Smalter et al. built a disease gene classification system using
he topological features of PPI networks and other features using
VMs [18]. Radivojac et al. combined various data sources of human
PI network, known gene-disease associations, protein sequence,
nd protein functional information and exploited them by SVMs
24]. Other work were based on integrating PPI network data with
ene expression data [25], or with disease phenotype data [26].

It is worth noting that all the above-mentioned supervise learn-
ng methods are based on the assumption about the separation of
vailable disease genes and non-disease genes. However, we can
nly know for sure a relatively limited number of discovered dis-
ase genes and the non-disease genes while in between them most
uman genes are as yet-unidentified genes, which are not known as
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

isease genes or non-disease genes. It is significant to develop com-
utational methods that take into account those human genes. To
his end, we develop a novel and effective computational method
or predicting disease genes using a systematic semi-supervised
 PRESS
ce in Medicine xxx (2011) xxx– xxx

learning (SSL) framework with multifarious biological data related
to disease genes. The key idea is to combine useful data regarding
both known disease genes and neighbours of disease genes.

This work has two main contributions. On the one hand, it is
the first to not only predict the yet-unidentified genes but also use
them in the prediction process by the SSL method. It is known that
genes associated with a particular phenotype or function are not
randomly positioned in the PPI network, but tend to exhibit high
connectivity; they cluster together and occur in central network
locations [9].  This overriding property supports the fundamental
assumptions about the consistency of SSL, and thus SSL enables us
to systematically integrate genomic and proteomic features related
to diseases from various data sources, which further enriches the
proposed computational scheme. On the other hand, the method
integrates the suitable multiple features needed for characterizing
yet-unidentified genes in the SSL scheme. Six biological databases
are extracted, preprocessed and integrated, including Universal
Protein Resource (UniProt) [27], Gene Ontology (GO) [28], Pfam
[29], InterDom [30], Reactome [31], and a gene expression dataset
[32]. Different functions to characterize topological features of the
human PPI network, genomic and proteomic features are appropri-
ately defined. By exploiting such integrated data of disease genes
neighbours, it is expected to better predict the disease genes.

We carefully performed two  experiments to evaluate the per-
formance of the proposed SSL method. By employing a 10 times
stratified 10-fold cross validation, the first one was to evaluate
the SSL method, the k-NN method on only PPI data [10] and the
SVMs method on multiple data [18]. The results showed that SSL
method predicted more effectively disease genes in terms of sen-
sitivity, specificity, precision, accuracy, and a balanced F-function.
The second one was  to estimate accuracy of the SSL method and the
k-NN method with different data sizes l of the labeled data set and
each set was tested with twenty trials. Higher accuracy of the SSL
method was  achieved for all of the tests, even though given a small
amount of labeled data. We  also did six experiments with different
combinations of data features to show the advantage of the data
integration and the integration of all data features produced the
best result.

This work not only proposes an effective method for disease
gene prediction, but also hypothesizes a number of putative disease
genes. We carefully carried out an experiment with disease gene
information extracted from the Online Mendelian Inheritance in
Man  (OMIM) database [33]. Testing with all interacting partners of
disease proteins, we predicted 572 putative disease proteins. The
analysis of these proteins through several ways indicates that the
findings are beneficial in deciphering the pathogenic mechanisms.

2. Method

In this section, we  first briefly introduce the semi-supervised
learning with its appropriateness in disease gene prediction, and
then present the proposed framework including the pre-processing
procedure for multiple data features.

2.1. Semi-supervised learning and disease gene prediction

Semi-supervised learning is halfway between supervised and
unsupervised learning. Essentially, it additionally exploits large
sets of available unlabeled data to do supervised learning tasks
when the amount of supervised data is limited and additionally
exploits rich information in available labeled data to do unsuper-
es based on semi-supervised learning and protein–protein interaction

vised learning tasks. SSL is very useful in solving many real-world
problems, especially in the domains where labeling requires much
human labour while voluminous unlabeled data is far easier to
obtain. In biomedicine, SSL has been applied to many problems and

dx.doi.org/10.1016/j.artmed.2011.09.003
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as achieved notable results, for example, in the study of protein
lassification [34] and in functional genomics [35], among others.

Due to its capability of learning from both labeled and unlabeled
ata, SSL is potentially more effective in predicting disease genes.
ote that the disease gene identification has been raised as one
eneral classification problem because of two biological reasons.
he first one is that disease genes (which are known) are apparently
ifferent from other human genes (yet-unidentified disease genes).
he second one is that disease genes have several sharing features
3,36] that be well appropriate in SSL applications.

Analyzing the appropriateness of SSL in the disease gene pre-
iction, it is found that the topology of PPI networks satisfied
he fundamental assumptions about the consistency of SSL. These
ssumptions of consistency are: (i) nearby points are likely to
ave the same label and (ii) points on the same structure (typi-
ally referred to as a cluster or a manifold) are likely to have the
ame label [37]. Likewise, genes that are associated with a par-
icular phenotype or function including the progression of disease
re not randomly positioned in the network. Rather, they tend to
xhibit high connectivity, cluster together, and occur in the net-
ork hubs [9].  As a result, a graph-based SSL method can be suitable

or the task of disease gene prediction as PPI networks, when being
onsidered as graphs with nodes as proteins and edges as protein
nteractions, satisfy the SSL assumptions.

There are about 25–30,000 genes in the human body. As
eported in [33], some of them are known to cause diseases, and for
hese we use the term “known disease genes” or “disease genes”.
enes that are assumed not to cause any disease are referred to
s “known non-disease genes” or simply “non-disease genes”. Dis-
ase genes and non-disease genes are labeled data (positives and
egatives respectively) in SSL, and the yet-unidentified genes are
nlabeled data in SSL. The details of our proposed method are pre-
ented in Sections 2.2 and 2.3.

.2. The proposed method for predicting disease genes
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

The key premise is to enrich the disease gene prediction by (1)
ncorporate both known disease genes and neighbours of disease
enes and (2) integrating multiple data sources in the SSL scheme.

Fig. 1. Semi-supervised learning meth
 PRESS
ce in Medicine xxx (2011) xxx– xxx 3

Fig. 1 illustrates three main steps: (i) identify disease proteins,
non-disease proteins, and candidate proteins, (ii) extract and pre-
process heterogeneous data from multiple data sources, and (iii)
use SSL to predict disease genes. Detailed procedures for three steps
are described as follows.

2.2.1. Identify disease proteins, non-disease proteins and
candidate proteins

First, take available disease genes, i.e., from the OMIM database
and identified the corresponding disease proteins by the UniProt
accessions. The set of disease proteins is the positive example set
P+.

Second, extract interactions pij of disease proteins pi (pi ∈ P+)
from a protein interaction network �.  A set of candidate proteins
were obtained as the set of neighbours pj of disease proteins pi
in the network �. The set of candidate proteins is the unlabeled
example set Pc .

Third, randomly choose non-disease proteins which are not can-
didate proteins in the set Pc and also not proteins corresponding to
genes in the ubiquitously expressed human genes (UEHGs) set. The
reason for excluding UEHGs is that UEHGs are essential genes hav-
ing features that differ significantly, both from disease genes and
from other genes [3].  The set of non-disease proteins is the negative
example set P−.

After Step 1, we prepared the two  sets of labeled data (the
positive dataset P+ and the negative dataset P−), and one set of
unlabeled data (the candidate proteins set Pc). Denote by P∗ the set
obtained by the union of these three sets, i.e., P∗ = P+ ∪ P− ∪ Pc .

2.2.2. Extract and preprocess heterogeneous data from multiple
data sources

For each protein in P∗, extract numerous data from multiple
public databases. We  investigated several topological, proteomic,
and genomic features tfeature associated with diseases. Data regard-
ing these features have indeed mixed binary, categorical and
es based on semi-supervised learning and protein–protein interaction

numerical types. For this reason, the data were preprocessed, con-
cretely binary and categorical data were transformed to numerical
data and then numerical data were normalised. Score functions
ffeature were proposed to normalised the data features tfeature.

od for disease gene prediction.

dx.doi.org/10.1016/j.artmed.2011.09.003
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Table  1
Six public databases used for data retrieval (Accessed: January 2009).

Database Description URL Statistics

UniProt [27] A comprehensive high-quality and freely accessible resource of
protein sequence and functional information

http://www.UniProt.org 220,325 entries

i2d  [39] A known experimental and predicted PPIs for five model
organisms and human

http://ophid.utoronto.ca/ 424,066 entries

Reactome [31] A curated resource of core pathways and reactions in human
biology

http://www.reactome.org 928 pathways for human

GO  [28] A controlled vocabulary to describe gene and gene product
attributes in any organism

http://www.geneontology.org/

Pfam [29] A large collection of protein families, each represented by multiple
sequence alignments and hidden Markov models

http://www.sanger.ac.uk/Software/Pfam/ 10,340 families

InterDom [30] A database of putative interacting protein domains derived from
multiple sources

Table 2
Statistics of two sets P+ and P∗ with the eight extracted proteomic and genomic
features.

Data sources Feature tfeature �Record �Category

in P∗ in P+ in P∗ in P+

UniProt tlength 4412 1496
tKW 31,465 13,597 564 504
tEC 1123 451 133 106

Gene Ontology tGO 17,241 6404 2911 1817
Pfam tPfam 6817 2426 1796 1413
InterDom tDDI 3854 1322
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Reactome tPathway 1167 540 68 62
Gene Expression texpression 696 52

.2.3. Use SSL to predict disease genes
A graph-based SSL algorithm was appropriately employed for

he prediction task. The labeled and unlabeled datasets (in Step
) and the multiple data (in Step 2) were learned using Gaussian
elds and Harmonic functions [38]. More specifically the learning
roblem was formulated in terms of a Gaussian random field on the
eighted graph representing labeled and unlabeled data, where the
ean of the field was characterized in terms of harmonic functions.

he output was a set of new putative disease genes.

.3. Extracting and preprocessing heterogeneous data

Several biological features are known to associate and cause dis-
ases. However, data concerning those features are scattered in a
ide range of data sources. A computational scheme for the data

ntegration has been emerged to better study disease genes. Our
roposed method employed SSL to combine data features of both

abeled examples and unlabeled examples.
Table 1 presents some description about six databases under our

nvestigation. Topological data of the PPI networks were extracted
rom the i2d database (the formerly known as Online Predicted
uman Interaction Database). Other data concerning eight pro-

eomic and genomic features were selected from six data sources
five public databases and one published dataset): UniProt (three
eatures on sequence length, tagged keyword, and coded enzyme),
O (one feature on GO term), Pfam (one feature on protein domain),

nterDom (one feature on domain-domain interaction), Reactome
one feature on pathway), and gene expression dataset (one feature
n gene expression profile).

Table 2 shows the statistics of the proteomic and genomic fea-
ures from each data source used. Columns, 3 and 4, present the
umbers of records extracted according to their respective features,
nd the last two columns show the numbers of feature categories.
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

mong the 5557 proteins in P∗, 31,465 data records were found for
he keyword features, and 1123 for the enzyme features. These pro-
eins shared the same 564 keywords and 133 enzymes, as shown in
able 2. For example, two records (P05067, Alzheimer disease) and
http://interdom.i2r.a-star.edu.sg/ 148,938 entries

(P01011, disease mutation) where P05067, P01011 are the UniProt
accessions; “Alzheimer disease” and “disease mutation” are their
keywords, or (O75688, ec3.1.3) where O75688 is the UniProt name
and ec3.1.3 is the enzyme commission.

The data types are heterogeneous, since the keyword data,
the pathway data and coded enzyme data are in form of a cat-
egorical free text, while the sequence length and number of
domain–domain interactions are numerical values. We  defined
score functions to transform and normalise the extracted data. The
score functions ffeature proposed for topological feature data and
genomic, proteomic data features are introduced below and sum-
marized in Table 3. Note that in the experimental evaluation the set
P+ consists of disease genes in the training dataset (not the whole
set of disease genes).

Gene expression data are valuable to be incorporated because
it is the quantitative trait and highly heritable. A lot of evidence
showed the potential causal impact of differential gene expres-
sion on complex disease risk [32]. After investigating several gene
expression datasets, such as [40–42],  we  used the gene expression
profile that defined colon cell maturation [40]. Mariadason et al.
analyzed 17,280 sequences to reveal the maturation of Caco-2 cells
and then studied related biological phenomena, such as patterns
of coordinate regulation, cell cycle, xenobiotic and drug detoxifica-
tion, signal transduction pathways, etc. Because of containing rich
information, we chose this set to explore gene expression profile
information. It was not necessary to preprocess the gene expression
data because they were normalised already.

• The topological function: This function measures the topological
association between a given protein and disease proteins based
on the PPI network. We  can assume that if one protein has many
interactions with disease proteins, this protein is likely to be a
disease protein. The function fppi(pi) was defined for the feature
tppi.

• The keyword function: Disease proteins may  have the same key-
words, and these common keywords are tagged more frequently
in the set of disease proteins than other proteins. Categorical data
of the keyword feature were converted and normalised by their
frequency and assigned to each protein pi by the function fkw(pi).

• The enzyme function: Enzymes perform a wide variety of functions
inside living organisms. The relationship between enzymes and
diseases has been studied in many research. Like the keyword fea-
ture, some specific enzymes are often shared among the group of
disease proteins. This data feature was  scored by function fec(pi).

• The sequence length function: We  investigated the protein
sequence length feature to study how the sequence length
of a protein relates to disease-causing mechanisms. Function
es based on semi-supervised learning and protein–protein interaction

flength(pi) was  the ratio of sequence length of a protein over the
average length of disease proteins.

• The GO term function: The GO terms are divided into three groups:
molecular function, biological process, and cellular component.

dx.doi.org/10.1016/j.artmed.2011.09.003
http://www.UniProt.org
http://ophid.utoronto.ca/
http://www.reactome.org
http://www.geneontology.org/
http://www.sanger.ac.uk/Software/Pfam/
http://interdom.i2r.a-star.edu.sg/
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Table  3
Topological feature, genomic/proteomic features and their corresponding functions.

Functions Notations and explanations

fppi(pi) =

∑
pj∈P+ Int(pi,pj )∑
pj∈P∗ Int(pi,pj )

×

∑
pj∈P+ Int(pi,pj )

Avgppi
Int(pi, pj) =

{
1 betweenproteins pi and pj,
0 otherwise.

Avgppi: the average of the number of protein interactions belonging to disease proteins.

fkw(pi) = 1∑
∀kwi∈pi

wkw
i

wkw
i

= freq+(kwi) × freq∗(kwi)

freq+(kwi): the frequency count of kwi observed in P+ .
freq*(kwi): the frequency count of kwi observed in P∗ .

fec(pi) = freq+(eci) × freq*(eci) freq+(eci): the frequency count of eci observed in P+ .
freq*(eci): the frequency count of eci observed in P∗ .

fgo(pi) = 1∑
∀goi∈pi

wgo

i

wgo
i

= (�go+
i

+ 1)/(�go∗
i
+ 1)

�go+
i

: the frequency count of goi observed in P+ .
�go∗

i
: the frequency count of goi observed in P∗ .

fpfam(pi) = �pfam+
i

+1

�pfam∗
i
+1

�pfam+
i : the number of domains dj of a protein pi observed in P+

�pfam∗
i : the number of domains dj of the protein pi observed in P∗ .

flength(pi) = length(pi )
Avglength

length(pi): the sequence length of a protein pi .

Avglength: the average sequence length of disease proteins in P+ .

fpathway(pi) =
∑

∀pathwayi∈pi
wpathway

i
wpathway

i
= freq+(pathwayi) × freq∗(pathwayi)

freq+(pathwayi): the frequency count of pathwayi observed in P+ .
freq*(pathwayi): the frequency count of pathwayi observed in P∗ .

fddi(pi) = 1∑
∀ddii∈pi

wddi
i

wddi
i

= Avgddi
�ddi(pi )

e num
averag

•

•

•
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�ddi(pi): th
Avgddi: the 

These terms present the typical information about the proteins,
and the disease proteins probably centralise on some specific
terms that were normalised by the function fgo(pi).
The protein domain function: Protein domains are the building
blocks of proteins. Disease proteins may  structurally or function-
ally depend on their domains. If a protein has many domains
related to disease, this protein is more likely to be a disease pro-
tein. Pfam domains dj of all considered proteins were nomalised
by fpfam(pi).
The DDI function: DDIs are likely to regulate the interactions of
proteins, and themselves perform specific functions in cells, par-
ticularly in causing diseases. We  obtained the DDI data from the
InterDom database and weighted them by fddi(pi) based on the
number of their DDI shared with disease proteins.
The biological pathway function: Many disease processes arise
from defects in biological pathways. Extracting data from Reac-
tome database, there were 68 pathways involved by all proteins
in the extended protein set and among these pathways 62 path-
ways were found to contain at least one disease protein. The
fpathway(pi) of feature tpathway was based on the frequency of the
pathways observed in both P∗ and P+.

. Experiments

To evaluate the performance of the proposed method, we
epeated two previous works based on supervised learning, i.e. the
-NN method with single data [10] and the SVMs method with mul-
iple data [18]. The k-NN method is a typical classification method
hat assigns class label to a unknown object based on the majority
f its nearest neighbours in the known classes. The SVMs method
s a typical kernel method that learns a hyperplane to separate two
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

lasses with their maximized margin.
We  carried out two comparative evaluations. By employing

 10 times stratified 10-fold cross validation, the first one was
o evaluate the SSL method, the k-NN method and the SVMs
ber of DDI observed in P+ of protein pi .
e of the number of DDI of disease proteins in P+ .

method in terms of sensitivity, specificity, precision, accuracy, and
a balanced F-function. The second one was to estimate accuracy
of the SSL method and the k-NN method with different data sizes
l of the labeled data set and each set was  tested with twenty trials.
Additionally, we did six experiments with different combinations
of data features to show the advantage of the data integration.

We prepared three data sets to carry out the experiments: a set
of disease genes, a set of non-disease genes, and a set of PPIs. We
repeated the similar procedure of choosing negatives and positives
as it was  done in [10,18]. The set of disease genes was extracted
from the OMIM database that is a catalogue of human genes and
genetic disorders. In the OMIM database the list of hereditary dis-
ease genes is described in the OMIM morbid map. As reported in
[33], there are 4512 records with 3053 unique OMIM identifiers
in the catalogue. A total of 3053 human disease phenotypes were
mapped to look for their disease proteins identified by UniProt
accessions. The results showed 3590 corresponding disease pro-
teins and this disease protein set consisted of 1502 proteins having
interactions published in the i2d database. From the set of human
genes, we  randomly chose negative examples, which did not belong
to both the OMIM morbid map  and the UEHG set. As the ratio
between human disease genes and non-disease genes is currently
not known, we  generated the equal number of non-disease pro-
teins to the number of disease proteins. The set of human PPIs were
extracted from the i2d database. Among 51,934 human PPIs stored
in the i2d database, there were 13,368 interactions, which had at
least one interacting partner belonging to the set of disease pro-
teins. Based on 13,368 interactions, the initial set of 1502 disease
proteins was  extended to 5775 proteins.

In the SSL implementation, we have chosen the SemiL software,
developed by Huang and Kecman [43] (Accessed: January 2009),
es based on semi-supervised learning and protein–protein interaction

to run the Harmonic Gaussian method as it is efficient for solving
large-scale semi-supervised learning problems using graph kernels
and thus it is suitable for the topological characteristics of PPI net-
works. In the algorithm, given l labeled points (x1, y1), . . .,  (xl, yl) and

dx.doi.org/10.1016/j.artmed.2011.09.003
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Table  4
The 10 time 10-folds cross validation performance of the SSL method (SSL1 with Cosine distance and SSL2 with Euclidean distance) compared to the two methods SVMs and
k-NN. The performance of the SSL method is highlighted in bold.

Method Precision Accuracy Sensitivity Specificity F-measure

SSL1 0.812 ± 0.042 0.823 ± 0.019 0.852 ± 0.031 0.794 ± 0.041 0.829 ± 0.013
SSL2 0.806 ± 0.039 0.820 ± 0.019 0.850 ± 0.026 0.789 ± 0.036 0.825 ± 0.013
SVMs  0.713 ± 0.032 0.741 ± 0.023 0.804 ± 0.035 0.677 ± 0.038 0.756 ± 0.019
1-NN  0.779 ± 0.033 0.786 ± 0.032 0.798 ± 0.025 0.774 ± 0.042 0.789 ± 0.032
3-NN  0.768 ± 0.037 0.782 ± 0.020 0.806 ± 0.030 0.757 ± 0.037 0.787 ± 0.027

0.819 ± 0.029 0.744 ± 0.037 0.789 ± 0.027
0.822 ± 0.030 0.720 ± 0.022 0.782 ± 0.019
0.770 ± 0.027 0.752 ± 0.034 0.763 ± 0.026
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Table 5 and Supplementary material 1 present the results of the six
experiments. It is shown that the combination of all investigated
data features (as presented in Section 2.3)  produces the best result.

Table 5
The error rate of the SSL method with different combinations of data features (e1
with Cosine distance and e2 with Euclidean distance).

Experiment e1 e2

Exp1: All data features excluding the PPI data feature 0.212 0.216
Exp2: All data features excluding two data features PPI and

the DDI
0.216 0.221

Exp3: All data features excluding the gene expression data
feature

0.204 0.207

Exp4: All data features excluding the sequence length data 0.208 0.211
5-NN  0.771 ± 0.031 0.771 ± 0.017 

7-NN 0.761 ±  0.042 0.761 ± 0.024 

9-NN 0.776 ± 0.030 0.540 ± 0.025 

 unlabeled points (xl+1, . . .,  xl+u), the data space is represented as a
raph G = (V, E). The set of nodes V corresponds to both nodes L = {1,

 . .,  l} corresponding to labeled points and nodes U = {l + 1, . . .,  l + u}
orresponding to unlabeled ones. The task is to assign (predict) the
abels of nodes in the set of unlabeled data. An n × n symmetric

eight matrix W on the edges of the graph is given. When x ∈ R, W
as defined as

ij = exp

(
−

m∑
d=1

(xid − xjd)2

�2
d

)

here xid is the dth component of instance xi represented as a vec-
or xi ∈ R, and �1, . . .,  �m are length scale hyperparameters for each
imension. The nearby points in the Euclidean space are assigned

arge edge weights. Intuitively, unlabeled points that are nearby
n the graph have similar labels. In our experiment, the weight

atrices W were calculated with two different distance functions:
uclidean and Cosine, and the degree of graph was 20.

We  used the popular machine learning workbench package
eka [44] to run k-NN and SVMs. For the k-NN method test, the

ifferent values for the parameter k were chosen exactly as in Xu
nd Li’s work [10]. For the SVMs test, the kernels were RBF and lin-
ar kernel functions, and other parameters were default values as
n [18].

. Results

.1. Computational validation

In the first experiment, we evaluated five measures of precision,
ccuracy, sensitivity, specificity, and F-measure by a 10 × 10-fold
tratified cross validation [45] for the three methods, SSL, k-NN, and
VMs. In each fold, the training data set was randomly divided into
0 subsets, 9 subsets for training and the rest one for testing and in
ach subset, the number of negatives and positives were equal. The
erformance of the SSL method, the k-NN method, and the SVMs
ethod then was  statistically tested in terms of confidence inter-

als, to give an estimate of the amount of error involved in the data.
o estimate a 95% confidence interval for each calculated precision,
ccuracy, specificity, sensitivity and F-measure we  used t distribu-
ion. The experimental results with 95% confidence intervals are
hown in Table 4. The experimental results demonstrated that the
SL methods performed better the other methods in the disease
ene prediction.

In the second experiment, from the training dataset we  ran-
omly selected l data points as labeled data, while the rest (n − l)
ere unlabeled data. The accuracy was estimated by comparing the
umber of predicted labels and the number of true labels. For each
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

abeled set size l, we did 20 trials and the final result was the aver-
ge accuracy of the 20 trials. These procedures were carried out
or both the SSL method and the k-NN method on the same testing
atasets.
Fig. 2. Accuracy of the proposed method with different labeled set sizes for Cosine
distance (SSL1) and the Euclidean (SSL2) compared to the k-NN method.

Fig. 2 shows the accuracy of our method and the k-NN method
with various parameters k. When the labeled set size was small
(10% of the dataset), the SSL method obtained non-trivial accuracy
of 78%. When the amount of labeled data was  at least half of the total
dataset, accuracy of the SSL method is over 80%. By comparison with
the k-NN method, the SSL method obtained higher accuracy with
all tested sizes of the labeled data set. The results demonstrated
that when there was a limited number of labeled data, SSL could
predict disease genes better than supervised learning did.

Additionally, to see the advantages of data integration, we  did
six experiments with six different groups of the data features. For
each experiment, we  calculated the error rate [43] of the prediction.
es based on semi-supervised learning and protein–protein interaction

feature
Exp5: All data features excluding two data features

domain and DDI
0.206 0.210

Exp6: All of investigated data features 0.185 0.190

dx.doi.org/10.1016/j.artmed.2011.09.003


ARTICLE IN PRESSG Model

ARTMED-1199; No. of Pages 9

T.-P. Nguyen, T.-B. Ho / Artificial Intelligence in Medicine xxx (2011) xxx– xxx 7

Table  6
List of some high-ranked disease genes by Endeavour system.

� Rank Gene symbol Gene name Q-int p-value

2 MYH10 Myosin, heavy chain 10, non-muscle 1.16E−  08 0.00026408
4 FYN FYN  oncogene related to SRC, FGR, YES 3.70E−  07 0.001516515
7 ALK  Anaplastic lymphoma receptor tyrosine kinase 2.47E−  06 0.003953699

10  ERBB3 (HER3) v-erb-a erythroblastic leukemia viral oncogene homolog 3 (avian) 4.90E−  06 0.005591587
11  ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 5.64E−  06 0.006002614
13  LAMA4 Laminin, alpha 4 6.97E−  06 0.006679875
14  JAK1 Janus kinase 1 (a protein tyrosine kinase) 7.68E−  06 0.00701467
16 SPTBN1 Spectrin, beta, non-erythrocytic 1 9.49E− 06 0.007801282

ein 1 (alpha-2-macroglobulin receptor) 9.80E−  06 0.007931698
1.26E−  05 0.00899866
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17 LRP1 Low density lipoprotein-related prot
22 ACTN2 Actinin, alpha 2 

.2. Biological validation

We  biologically validated the putative disease genes through
ifferent techniques. Testing the whole network of protein inter-
ctions, we detected 572 putative disease proteins. The list
f predicted disease proteins and their corresponding genes is
resented in Supplementary material 2. The biological analysis sup-
orted our findings that could be the starting point for new studies
n pathophysiology of various diseases.

We investigated the findings by: (i) validating the putative dis-
ase gene’s keywords and pathways shared with known disease
enes, (ii) checking their functional category and gene similarity
ia the DAVID tools [46] (Accessed: January 2009), (iii) testing
hem with the ranking system Endeavour – Computer Program
or Identifying Disease Genes [47] (Accessed: January 2009), and
iv) studying their disease-related information through biomedical
iterature. This section discusses some interesting findings.

Firstly, we checked whether the putative disease proteins had
eywords and pathways of known disease proteins. Among 47
eactome pathways shared with known disease proteins, we found
hat the set of putative proteins belonged to many pathways asso-
iated with disease traits, such as ‘Signalling in Immune system’  (29
utative proteins), e.g. PI3-kinase p85 subunit beta, GTPase HRas,
LA class I histocompatibility antigen, A-3 alpha chain; ‘Hemosta-

is process’ (25 putative proteins), e.g. PI3-kinase p85 subunit beta,
latelet-derived growth factor subunit A; and ‘Gene expression pro-
ess’ (21 putative proteins), e.g. Cyclin-T1. There were 167 over
72 putative disease genes participating in disease-related path-
ay. Similarly, 270 Uniprot keywords of predicted disease genes
ere tagged for known disease proteins. Among them, many puta-

ive disease proteins shared the same keywords, e.g., ‘alternative
plicing’ with 212 proteins, ‘polymorphism’  with 195 proteins, and
glycoprotein’ with 187 proteins.

Secondly, we checked the functional category, and the gene
imilarity of the putative disease genes via the DAVID tools.
nterestingly, 29 genes were found in 67 records in the Genetic
ssociation Database (GAO).1 For example, IGFBP2 (insulin-like
rowth factor binding protein 2, 36 kDa), and TNFSF8 (tumour
ecrosis factor (ligand) superfamily, member 8) were related to the
erm ‘diabetes, type 1’; IFNAR1 (interferon alpha, beta and omega
eceptor 1) was related to the term ‘Hepatitis B, Chronic’, and ITGA3
Integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 recep-
or)) is related to the term ‘breast cancer’.  Checking the putative
isease genes in the OMIM database, 2 genes were related to 8
ecords found in database OMIM with the term ‘Colorectal cancer’,
.g., BAX (bcl2-associated x protein) and HRAS (v-Ha-ras harvey rat
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

arcoma viral oncogene homolog). The detailed results with enrich-
ent analysis are presented in Supplementary material 3.

1 http://geneticassociationdb.nih.gov.
Fig. 3. Functional networks of the high-ranked disease genes.

Thirdly, we evaluated the putative disease genes through the
Endeavour system. Endeavour is a software application for the
computational prioritization of candidates genes, based on a set
of training genes. In order to estimate the reliability of the pre-
dicted genes, they were ranked by the Endeavour system with all
available data sources. There were 42 predicted genes with p-value
≤0.05 which were found in the set of predicted disease genes.
Some of them obtained a very high rank with a statistically sig-
nificant p-value. Table 6 lists the top 10 putative genes ranked by
the Endeavour system.

In order to study how the predicted genes related to some
specific diseases, we did the second test for 572 candidate proteins
with three diseases, cancer, diabetes, and Alzheimer’s. The similar-
ity measure between the candidate genes and the known disease
genes was calculated by two  systems Ouzounis [48] and ProspectR2

(Accessed: January 2009). It was  absorbing that the Endeavour sys-
tem returned high ranked genes with p-value ≤0.01, for example,
genes MYH10, FYN, ALK, LAMA4, ERBB4,  LRP1. We  illustrated the
functional associations of the top ten proteins ranked by Endeavour
using the visualisation tool of the STRING database3 (Accessed:
January 2009). Fig. 3 shows the functional network of these pro-
es based on semi-supervised learning and protein–protein interaction

teins. This network demonstrates how these proteins functionally
connect with others; and the thickness of an edge (a connection)
displays the strength of that connection. In the network, four

2 http://www.genetics.med.ed.ac.uk/prospectr/.
3 http://string.embl.de.

dx.doi.org/10.1016/j.artmed.2011.09.003
http://geneticassociationdb.nih.gov
http://www.genetics.med.ed.ac.uk/prospectr/
http://string.embl.de
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roteins ERBB3 (HER3),  ERBB4,  NGL (ERBB2) and JAK1, closely asso-
iated with each other. It suggested that these proteins might relate
o or cause the same diseases. Besides, protein FYN was found that it
as highly connected with other proteins as a hub of the networks.

Considering four aforementioned proteins ERBB3 (HER3), ERBB4,
AK1, and FYN, there are biological evidence presented their rele-
ance with cancer.

Signalling pathways regulated by ErbB receptor family are
nvolved in cancer progression [49]. Studies of ERBB3 expression
n primary cancers and of its mechanistic contributions in cultured
ells have implicated it, with varying degrees of certainty, with cau-
ation or sustenance of cancers of the breast, ovary, prostate, certain
rain cells, retina, melanocytes, colon, pancreas, stomach, oral cav-

ty and lung [50]. ERBB4 receptor tyrosine kinase in breast cancer is
enerally regarded as a marker for patient prognosis, controversial
xceptions [51].

Studying the family of Jak kinases,  it is known to be composed
rom at least four different tyrosine kinases (Tyk2, Jak1, Jak2, Jak3)
hat share significant structural homology with each other. The

embers of this family of kinases associate constitutively with a
ariety of cytokine and hormone receptors. In their review [52],
erma et al. affirmed that the JAK family played important roles in

he generation of responses for interferons, which were cytokines
hat exhibit important antitumour activities. Recent discoveries
ave suggested that mutated JAK proteins would be potent targets

or anti-cancer therapy [53].
Proto-oncogene tyrosine-protein kinase Fyn is implicated in the

ontrol of cell growth. And this kinase is required in brain develop-
ent and mature brain function with crucial roles in the regulation

f axon growth, axon guidance, and neurite extension [54,55].  It
as been discovered that FYN is downregulated in prostate cancer
y both chromosomal deletion and promoter hypermethylation,
nd therefore is a novel prostate tumour suppressor gene candi-
ate [56].

The above analysis showed that the predicted disease proteins
ere practically useful when studying the genes involved in dis-

ases of interest. Doctors and biologists would employ these results
s the hypothetical disease genes for aiding or guiding the wet
xperiments. This is where the findings of this work become bene-
cial.

. Conclusion

In this paper, we have introduced a method based on semi-
upervised learning, integrating multiple data features, for the
isease gene prediction. The method proposed here is a systematic
ramework that can be applied to not only a general disease study,
ut also to a particular disease. Several biological features associ-
ting with diseases were examined and extracted and they were
ffectively combined in the proposed method. The experimental
esults demonstrated that our method performed well with high
ccuracy, and at the same time, predicted some new putative dis-
ase genes. Performing the experimental with small amounts of
abeled data, the results demonstrated the advance of the method
n studying specific diseases in case that the known disease genes
as labeled data) are often very limited.

In future work, we would like to validate the predicted dis-
ase genes by experiments. It is interesting to extend the proposed
ethod by firstly clustering disease phenotypes and then identify-

ng disease genes for each disease cluster. Other work will involve
Please cite this article in press as: Nguyen T-P, Ho T-B. Detecting disease gen
networks. Artif Intell Med (2011), doi:10.1016/j.artmed.2011.09.003

pplying and comparing the performance of the Harmonic Gaus-
ian algorithm with other semi-supervised learning algorithms
or disease genes prediction. Feature selection techniques will be
eveloped to additionally preprocess data.
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Appendix A. Supplementary Data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.artmed.2011.09.003.
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