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ABSTRACT

In this paper, a new set of features is proposed that has been
found to improve the performance of automatic speaker
identification systems. The new set of features is referred
to as “event targets”. The new features have been derived
from line spectral frequency (LSF) parameters using the
so-called “temporal decomposition” (TD) technique. The
number of feature vectors required for both training and
testing phases has been reduced by one-fifth compared to
that of the traditional mel-frequency cepstrum coefficients
(MFCC) features, while the identification results obtained
are comparable or even better. Also, this work introduces
one more application of TD (speaker recognition) in ad-
dition to speech coding, speech segmentation, and speech
recognition. It shows that the event targets in TD can con-
vey information about the identity of a speaker.

1. INTRODUCTION

Speaker recognition is the process of automatically recog-
nizing the person speaking based on individual information
included in speech waves. There are two types of tasks
within speaker recognition: identification and verification.
The objective of a speaker identification (ID) system is to
determine the identity of an individual from a sample of
his or her voice. Speaker ID can be further subdivided into
two categories: closed set or open set. A closed-set speaker
ID system identifies the speaker as one of those enrolled,
even if he or she is not actually enrolled in the system. On
the other hand, an open-set speaker ID system should be
able to determine whether a speaker is enrolled or not, if
enrolled, determine his or her identity [1].

Another distinguishing aspect of speaker recognition sys-
tems is that they can be either text-dependent or text-
independent. In the text-dependent case, the input sen-
tence or phrase is fixed for each speaker, whereas in the text-
independent case, there is no restriction on the sentence or
phrase to be spoken. Speaker ID consists of two stages,
namely, feature extraction and classification as shown in
Fig. 1. This paper focuses on the feature extraction aspect
of the problem of text-independent closed-set speaker ID.

Feature extraction is the process of deriving a com-
pact set of parameters that are characteristics of a given
speaker. Ideally, these parameters should efficiently pre-
serve all the information relevant to the speaker’s identity
while eliminating any irrelevant information. That is, they
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Fig. 1. Block diagram of speaker identification systems.

should minimize the intra-speaker variance and at the same
time maximize the inter-speaker variances [1]. The major-
ity of speaker recognition systems use some types of short-
time spectral analysis. The most effective and widely used
spectral analysis techniques for speaker recognition are lin-
ear prediction (LP) analysis [1, 2] and filter bank analysis
[9, 12]. This paper focuses on LP-derived features, namely,
“event targets” that are extracted from the line spectral
frequency (LSF) parameters using the so-called “temporal
decomposition” (TD) technique [3, 6, 8, 11].

The state-of-the-art in classification techniques used in
speaker recognition include Dynamic Time Warping (DTW),
Hidden Markov Modeling (HMM), Gaussian Mixture Mod-
eling (GMM), and Vector Quantization (VQ) [7]. In this
work, the VQ-based speaker identification is used, due to
ease of implementation and high accuracy. It is well-known
that the VQ approach has demonstrated good performance
on limited vocabulary tasks. However, this method is some-
what impractical when the number of training and/or test-
ing vectors is large, since the memory and amount of com-
putation required become prohibitively high. Alternatively,
event targets as a new set of features for speaker recognition
can help to alleviate this problem.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the baseline VQ-based speaker ID.
Next, the process of event target extraction is described in
Section 3 and experimental results are reported in Section
4. Finally, conclusions are drawn in Section 5.

2. VQ-BASED SPEAKER IDENTIFICATION
Vector quantization (VQ) is a process of mapping vectors

from a large vector space to a finite number of regions in
that space. Each region is called a cluster and can be rep-

ICASSP 2003




resented by its center called a codeword. The collection of
all codewords is called a codebook.

VQ is used in both training and matching phases of
a VQ-based speaker ID system. In the training phase, a
speaker-specific VQQ codebook is generated for each known
speaker by clustering his or her training acoustic vectors.
The distance from a vector to the closest codeword is called
a VQ-distortion. In the matching phase, an input utter-
ance of an unknown speaker is vector quantized using each
trained codebook and the total VQ distortion is computed.
The speaker corresponding to the VQ codebook with small-
est total distortion is identified [7, 13].

3. EXTRACTION OF EVENT TARGETS

In articulatory phonetics, speech production is considered
as a sequence of overlapping articulatory gestures, each of
which may be thought of as a movement towards and away
from an ideal, but often not reached, articulatory target.
The sound produced by such an articulatory movement cor-
responds to a phoneme or a sub-phoneme in speech. In
other words, each gesture produces an acoustic event that
should approximate a phonetic target. Adjacent gestures
overlap one another resulting in the characteristic transi-
tions between phonemes that can be observed in almost
any parametric representation of the acoustic speech sig-
nal. Due to co-articulation and reduction in fluent speech,
a target may not be reached before articulation towards the
next phonetic target begins. It has long been a difficult task
to determine such targets and their temporal evolutionary
patterns from the acoustic signal alone.

The temporal decomposition (TD) method for analyz-
ing speech achieves the objective of decomposing speech
into targets and their temporal evolutionary patterns, with-
out any recourse to any explicit phonetic knowledge [3].
This model of speech takes into account the above articu-
latory considerations and results in a description of speech
in terms of event targets describing the ideal articulatory
configurations of the successive acoustic events in speech,
and event functions describing their temporal evolutionary
patterns. Therefore, it tries to achieve an optimal transfor-
mation from the multidimensional spectral parameter space
to the phonetic space which can be considered for many ap-
plications to be a powerful speech analysis technique.

Suppose that a given utterance has been produced by
a sequence of K movements aimed at realizing K acoustic
targets. Let us denote the speech parameters corresponding
to the kth target by a(k), and the temporal evolution of
this event by a function, ¢ (n). The frame number n varies
between 1 and N. In temporal decomposition of speech,
the observed speech parameters, y(n), are approximated
by ¥(n), a linear combination of event targets as follows.

$n) =Y api(n), 1<n<N 1)
k=1

In matrix notation the Equation (1) can be written as
Y=A3 Y e RP*N A e RP*X & ¢ RF*N

where P is the dimension of the spectral parameters. In
Equation (1), both the event targets and event functions
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Fig. 2. Block diagram of the MRTD algorithm.

are unknown and the temporal decomposition analysis in-
volves the determination of them once the speech parameter
sequence of an utterance is given.

The restricted second order TD model was utilized in
[6, 8, 11], where only two adjacent event functions can over-
lap and all event functions at any time sum up to one. The
argument for imposing this constraint on the event func-
tions can be found in [6, 11]. Equation (1) is rewritten as

¥(n) = ard(n) + ar1(l — ¢r(n)), nk <n <mnppr (2)

where nj and ny4;1 are the central positions of event k and
event k + 1, respectively.

In order to apply TD to decomposing line spectral fre-
quency (LSF) parameters, the stability of the corresponding
linear predictive coding (LPC) synthesis filter after spectral
transformation performed by TD must be ensured. The
restricted temporal decomposition (RTD) method [8] in-
tends to make LSF parameters possible for TD by enforcing
the LSF ordering property on the event targets. However,
RTD has not completely solved this problem as indicated
n [11]. Moreover, some event functions derived from RTD
are ill-shaped, i.e. they have more than one peak, which
is undesirable from speech coding point of view. Thus, the
modified RTD (MRTD) method [11] has been proposed to
overcome the drawbacks imposed on the RTD method. The
block diagram of MRTD is shown in Fig. 2 and the whole
algorithm is summarized as follows. For a detailed mathe-
matical treatment, the reader is referred to [8, 11].

First, the initial approximation of event targets is based
on a maximum spectral stability criterion. It is assumed
that each acoustic event that exists in speech gives rise to
a spectrally stable point in its neighborhood. Therefore,
the locations of the spectrally stable points and the corre-
sponding spectral parameter vectors can be used as a good
approximation to the event locations and event targets, re-
spectively. Here, event localization is done via the local
minimal points of a spectral transition measure called spec-
tral feature transition rate (SFTR).

In the result, when once the locations of events ny,
where kK =1, ..., K, are known and the corresponding event
targets are initialized with the samples of the LSF vector
trajectory y(nx), we can calculate proper event functions
and event targets iteratively in the least mean square sense.
However, since the event targets are calculated using the
formula A = Y‘I>T(<I><I>T)_1 which does not consider the
LSF ordering property for them, the estimated event targets
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Fig. 3. Plot of the event functions obtained from MRTD for
the Female/Japanese speech utterance “shimekiri ha geN-
shu desu ka”. The speech waveform is also shown together
with the phonetic transcription for reference. The numerals
indicate the frame numbers.

may not be interpreted as LSF vectors. Invalid LSF event
targets estimated from a LSF vector trajectory cause two
serious problem. Firstly, the event targets do not have their
own spectra as valid LSF vectors do. It follows that those
event targets are regarded as the numerical results, but not
as the idealized targets. They also prohibit us from match-
ing the determined events with meaningful phonetic units.
Secondly, it is impossible to utilize the advantages of LSF
parameters for quantization. The invalid LSF event targets
lower the intra/inter-correlations and do not guarantee the
stability of the reconstructed LSF vectors. Therefore, a
refinement procedure is applied to the estimated event tar-
gets to ensure the LSF ordering property for them with a
negligible increase in reconstruction error.

Fig. 3 shows the plot of event functions obtained from
the MRTD method for an example of a Female/Japanese
speech utterance. The associated event targets obtained
from MRTD analysis for a segment of the same speech ut-
terance are shown in Fig. 4.

The concept of temporal decomposition of speech has
attracted many researchers in recent years, specially in ap-
plication areas such as speech coding, recognition and seg-
mentation. The fact that TD decomposes the speech pa-
rameters into two elementary components, which occur at
a lower rate than the original speech parameters, gives a
means of coding speech efficiently at a lower bit rate [3, 8,
11]. The strong relationship between the TD representa-
tion of speech and the speech production mechanism has
provided the necessary motivation to investigate its appli-
cation in speech recognition [4, 5]. Its usefulness in speech
segmentation has also been investigated [6].

The application of TD to VQ-based speaker ID is mo-
tivated by the fact that TD is promising as a means of seg-
menting speech into a sequence of overlapping events closely
related to phonetic structure of the speech signals [5]. On
the other hand, the VQ-based speaker ID can be regarded as
a method that use phoneme-class-dependent speaker char-
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Fig. 4. Event targets obtained from MRTD for a segment of
the Female/Japanese speech utterance “shimekiri ha geN-
shu desu ka” (from frame number 51 to 150). Dark solid
lines show the log power spectra of event targets. The log
power spectra of the original LSF vectors are also provided.

Table 1. Summary of the speaker set.

# Speakers
Avg. duration of training utterance
Avg. duration of testing utterance

19 (31 M+18 F)
24.5 sec/speaker
3.1 sec/sentence

acteristics in short-term spectral features through implicit
phoneme-class recognition. In other words, phoneme-classes
and speakers are simultaneously recognized in this method
[7]. Therefore, the event targets extracted from spectral
parameters using TD can be considered as a new set of
features for VQ-based speaker ID.

4. EXPERIMENTAL RESULTS

4.1. Database

In the experiments, we used a speaker set of 49 speakers
collected from the New England dialect of TIMIT speech
corpus. The ratio of male and female speakers is not equal
in the set. For each speaker, there are ten sentences. The
training set is generated using the eight files with “sx” and
“si” prefixes, whereas the two files with “sa” prefix are in-
dividually used for testing. Summary of the speaker set is
given in Table 1.

4.2. Preprocessing and Feature Extraction

Prior to any analysis, the speech files were downsampled
from 16 to 8 kHz. High emphasis filtering with H(z) =
1—0.952"" was then performed.

To derive event targets used for VQ-based speaker ID,
10" order LSF parameters were calculated first, using a
LPC analysis window of 30 ms at 10 ms frame intervals.
In the following, the LSF parameters obtained were TD
analyzed using the MRTD method. The event rate, i.e. the
number of events per second, was set as about 20 events per
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Table 2. Total number of feature vectors used in the ex-
periments.

Phase # MFCC Vectors | # Event Targets
Training 118861 23511
Testing 30231 5929

Table 3. Identification success rates for different codebook
sizes and feature sets. Note that LSF features were calcu-
lated at the event locations.

Codebook Size | MFCC | Event Targets LSFs
16 89.80% 93.88 % 85.71 %
32 95.92% 95.92 % 93.88 %
64 94.90% 96.94 % 95.92 %
128 95.92% 96.94 % 95.92 %
256 95.92% 97.96 % 93.88 %

second, resulting in the number of event targets reduced by
one-fifth compared to that of the original LSF vectors.

For comparison, conventional mel-frequency cepstrum
coefficients (MFCC) were computed using the 12'* short-
term mel-cepstrum analysis, also with a 30 ms Hamming
window shifted by 10 ms, producing 100 feature vectors
per second. The 12 lowest coefficients (excluding the 0"
coefficient, which corresponds to the total energy of the
frame) were used as alternative features.

Table 2 gives the summary of feature vectors used in the
experiments. It can be seen from the table that the number
of event targets has significantly reduced compared to that
of MFCC vectors in both training and testing phases.

4.3. Results

A separate classifier was used for each feature set. The
distance measure here is the Euclidean distance. The code-
books for each speaker were designed using the LBG algo-
rithm [10]. Speaker ID results for different codebook sizes
and the two feature sets are given in Table 3. The perfor-
mance of VQ-based speaker ID on the initiated event targets
that consist of the original LSF vectors at event locations
is also shown together for reference.

For all codebook sizes listed in the table, the event tar-
get features almost show better performance than the other
features. This is mainly attributed to the fact that TD can
be considered as an effective method of decorrelating the
inherent inter-frame correlation present in any frame-based
parametric representation of speech. In addition, results
also show that the iterative refinement of event targets has
positively affected their speaker-specific information.

5. CONCLUSIONS

The event targets derived from LSF parameters using the
temporal decomposition technique were found to be effec-
tive when applied in a VQ-based speaker identification sys-
tem. Their performance is found to be superior to that of
the popular MFCC features in the case of testing on clean
speech. The number of feature vectors required for both

training and testing phases has been reduced by one-fifth
compared to that of the MFCC features, while the iden-
tification results obtained are comparable or even better.
More interestingly, it is shown that event targets can con-
vey information about the identity of a speaker. We plan to
make future experiments in more demanding environments
such as testing on noisy speech, speech at different speaking
rates, and cross-language evaluation.
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