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Abstract. In this paper we describe our ongoing project whose objec-
tive is to develop an interactive-graphic environment of related tools for
discovering and using conceptual knowledge in relation to influential as-
pects of the environment and representation. These aspects include the
amount of supervision, the manner of data presentation, the regularity
of the domain, the representation of data and knowledge. The core of
this project is two supervised and unsupervised learning methods that
induce knowledge in the form of concept hierarchies. The project aims
at improving the performance of these methods and at integrating their
implementation in the X Window with the direct manipulation style
of interaction. The ultimate goal of the project is to provide an envi-
ronment in which the user can find and use knowledge from data with
low-cost and high-quality.

1 DMotivation and Background

How to acquire knowledge for knowledge-based systems (KBS) remains as the main
difficult and crucial problem of KBS technology. In addition to this difficulty, the
explosive growth in the quantity of data stored in databases leads to a common situation
of “data rich and knowledge poor”. This situation creates a need of techniques and tools
for understanding and extracting useful knowledge from data. Knowledge discovery
in databases (KDD), the rapidly growing interdisciplinary field of computing which
merges together databases, statistics and machine learning techniques, aims at achieving
these goals [7]. Thus, the goals of KDD are essentially similar to those of traditional
knowledge acquisition (KA) for the KBS development.

In this paper we describe our ongoing project whose objective is to develop an
interactive-graphic environment of related tools for discovering and using conceptual
knowledge in relation to influential aspects of the environment and representation. The
core of our project is the supervised learning method CABRO [12] and the unsupervised
learning method OSHAM [14], [15], [16] which induce effectively knowledge in the form
of concept hierarchies. The project aims at improving the performance of these methods
and integrating their implementation in the X Window with the direct manipulation
style of interaction [11], that allows the user to find and use knowledge from data with
low-cost and high-quality.
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In this section we discuss the three main motivations of our project: “Why do we
choose the hierarchical model of conceptual knowledge”, “Why do we need to deal with
different aspects of the environment and representation?”, and “Why do we need to
build an interactive-graphic system for modelling?”. In sections 2 and 3 we will present
the basic ideas and the evaluation of CABRO and OSHAM. Sections 4 and 5 address
some issues in the project implementation and conclusions.

1.1 Hierarchical Models of Conceptual Knowledge

Conceptual modelling is a process of forming and collecting conceptual knowledge about
the universe of discourse, and documenting the results in the form of a conceptual
schema [20]. Conceptual modelling is a widely recognized activity in the process of
KBS development. It is important to notice that in the knowledge acquisition commu-
nity “expertise transfer” paradigms have been replaced in recent years by “knowledge
modelling” paradigms [8]. Clancey, the defender of the modelling view of knowledge
acquisition, argues that “the primary concern of knowledge engineering is modelling
systems in the world, not replicating how people think” [4].

The process of forming conceptual knowledge relates closely to the organization of
knowledge. Among three main alternative schemes of decision lists, inference networks,
and concept hierarchies for organizing knowledge descriptions, we are particularly inter-
ested in the last ones which are fundamental for the basic modeling scheme of informa-
tion processing [26] and are widely used in AT products such as KBS tools KEE, Kappa,
Nexpert Object, etc. The hierarchical model for conceptual modelling also shares the
common structured models on Object-Oriented Modelling [29].

A concept hierarchy is a structure composed of nodes and links. Each node rep-
resents a concept with its associated intensional description. The links connecting a
node to its children specify an “IS-A” or “subset” relation, indicating that the par-
ent’s extension is a superset of each child’s extension. Typically, a node covers all of
the instances covered by the union of its descendents, making the concept hierarchy a
subgraph of the partial ordering by generality. More abstract or general nodes occur
higher in the hierarchy, whereas more specific ones occur at lower levels [23].

The most widely used forms of concept hierarchies are decision trees and discrim-
ination networks. A decision tree is a classifier in the form of a tree structure whose
node is either a leaf (a class of instances) or a decision node that specifies some test to
be carried out, with one branch for each possible outcome of the test. A discrimination
network has a similar structure of trees but concepts at a branch do not have to be
mutually exclusive, so multiple father nodes can arise. A decision tree/discrimination
network can be easily converted into a set of decision rules [27].

Being modelled as a concept hierarchy, the exploitation of knowledge for a classifi-
cation process involves sorting instances downward through the hierarchy. In general,
the modelling task with this structure can be stated as follows:

e Given: A set of instances with/without class information;
e Find: A concept hierarchy that, to the extent possible, makes accurate
predictions about unknown instances.
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1.2 Influential Aspects of Environment and Representation

Techniques for acquiring conceptual knowledge are deeply influenced by different aspects
of the environment and of the representation of data and knowledge. Similarly to those
in [23], one can distinguish the following influential aspects:

e The conceptual knowledge involves one-step classification and prediction or multi-
step inference or problem solving;

e The application domain is supervised or unsupervised. The degree of supervision
concerns whether the class information in data or a domain expert is available. In
case of a supervised domain, there is a feedback about the appropriateness of the
discovered results and the discovering process is essentially error-driven. Without
this feedback in case of unsupervised domain, the discovering process is essentially
the search for regularities in data. In our opinion, the degree of supervision is the
most important aspect based on it we can choose techniques.

¢ The manner in which data are provided. One distinguishes a nonincremental task
when data are presented simultaneously (offline) and an incremental task when
data are presented serially (online).

e The regularity of the environment (e.g., complexity of the target knowledge, num-
ber of irrelevant attributes, the amount of noise and missing values, etc.).

e The representation nature of data and knowledge affects the discovering process.
One distinguishes data which contain symbolic attributes that are nominal or
ordinal ones, numeric attributes that take on real values, and relational literals.

e The three alternative schemes for organizing the knowledge descriptions of decision
lists, inference networks, and concept hierarchies [23]. As mentioned in subsection
1.1, we are particularly interested in the concept hierarchy structure that is widely

used in KBS.

All of these aspects may occur in realistic situations and influence the conceptual
modelling process. Often, each discovering method can deal with one or some men-
tioned aspects but not all. For example, most data analysis or optimization systems
are developed for numeric data and most machine learning systems are developed for
symbolic data. In the practical use of a discovery system, it is expected that it can
function in different situations.

For more complex data, our project shares some common tasks with the ESPRIT
FEuropean project SODAS [10] of 18 partners on a software for symbolic data analysis.
Symbolic data analysis [5] is a new attempt that aims at extending problems, methods
and algorithms used in standard data analysis to more complex data such as a set of
values, intervals of values, or a probabilistic distribution, etc.

1.3 An Interactive-Graphic Environment for Discovering

We perceive that conceptual modelling is an iterative cycle of knowledge refinement
in which the system provides and receives interactively feedback to and from the user.
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Current discovery systems do not always equal the human ability in identifying useful
concepts, and as the search problem in such a complex process requires much back-
ground knowledge and heuristics, the human factor in discovery process is always nec-
essary [13].

A strong interaction between the discovery system and the user is expected to
be a common feature of discovery systems as the discovery systems cannot produce
maximally useful results when operating alone. Recently, there are much efforts in the
development of interactive-graphic environments in order to improve the performance
of discovery systems. In [22] the authors develop an interactive-graphic environment for
constructing decision trees. In [24] the author develop system WinViz that integrates
multidimensional visualization with the program C4.5 for learning decision trees [27].

To support the knowledge acquisition modelling process, we use a Visual Interactive
Model through a rich graphical environment. A Visual Interactive Model (VIM) aims
at combining “meaningful pictures and easy interactions to stimulate creativity and
insight; promoting a process of 'generate and test’, it facilitates a rapid cycle of learning”
[1]. Concretely, in our environment VIM offers the user two main benefits: (1) better
understanding the induction process and generated decision trees/concept hierarchies,
especially by the Tree Visualizer; and (2) a more active role in the modelling process
with a interactive mode of operation.

2 Supervised Discovery of Knowledge

2.1 R-measure

The basic task of supervised discovery of conceptual knowledge is from a given set of
labelled instances to find a classifier that correctly predicts classes of unseen instances.
Among approaches to this problem the decision tree induction is probably the most
active and applicable one.

Table 1 gives a brief description of the common scheme for decision tree induction.
Decision tree induction systems differ from each other in their way to deal with two
crucial problems of attribute selection (choosing the “best” attribute to split a decision
node in terms of a measure for “goodness of split”) and pruning (avoiding overfit-
ting and obtaining statistical reliability). We have developed a decision tree induction
method called CABRO which uses R-measure for the attribute selection, a new measure
stemmed from the theory of rough sets [28].

Table 1. Framework of decision tree induction

Choose the “best” attribute by an attribute selection measure.

Extend tree by adding new branch for each attribute value.

Sort training examples to leaf nodes.

If examples unambiguously classified then stop else repeat steps 1-4 for leaf nodes.
Prune the obtained tree.

Gl W N =

Rough set theory is a mathematical tool to deal with vagueness and uncertainty.
The basic idea in this theory is to “view” approximately each subset X of an object
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set O by its lower and upper approximations w.r.t. an equivalence relation ¥ C O x O.
These approximations of X are defined, respectively, by F.(X) ={o€ O : [0l C X}
and E*(X) ={o € O: [oJg N X # 0}, where [0o]g denotes the equivalence class of an
object oin E. A key concept in the rough set theory is the degree of dependency of a set
of attributes @ on a set of attributes P, denoted by pp(Q) (0 < up(Q) < 1), defined as

_ card(Uyo Pr(lslo)) _ card(fo € O : [dlp € [dlo)) "
B card(O) B card(O)

If up(Q) = 1 then @ totally depends on P; if 0 < pup(Q) < 1 then Q partially
depends on P; if pup(Q) = 0 then @ is independent of P.

The measure up(Q) can be used directly in decision tree induction for the attribute
selection with () stands for the class attribute and P stands for a descriptive attribute.
In [12], our analysis and experiments have shown that pg(P) is not robust with noisy
data and not enough sensitive when partitions of O generated by P and () are nearly
identified. From this analysis, we have generalized and formulated a measure for degree
of dependency of an attribute set () on an attribute set P

MP(

1
1p(Q) = card(O) [% mayo)qcard([olo (o] p) (2)
The main difference between pp(Q) and pp(Q) is the latter measures the depen-
dency of ¢) on P in maximizing the predicted membership of an instance in the family
of equivalence classes generated by @) given its membership in the family of equivalence
classes generated by P.

Theorem. For every attribute set P and ) we have

maz(),card([o]g) ,
card(0) S He(@) <1

This property allows us to define that @ totally depends on P iff 1»(Q) = 1, Q
partially depends on P iff maz,,card([o]q)/card(0) < up(Q) < 1, and Q is indepen-
dent of P iff p(Q) = maz|,),card([o]g)/card(O). In practice, to emphasize rules those
have the higher generalities we use the following formula, and call it R-measure

S

[olp

2.2 Evaluation

Three criteria on the size, prediction accuracy and understandability mentioned in [25]
for evaluating decision trees are common used, among them the prediction accuracy of
pruned trees is widely considered to be of fundamental importance.

We have carried out carefully experimental comparative studies of R-measure with
some widely used measures as gain-ratio in C4.5 [27], gini-index in CART [2], x? in
statistics [25], by k-fold stratified cross validation.
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In k-fold stratified cross validation, the dataset is randomly stratified and divided
into & mutually exclusive subsets (folds) of approximately equal size and the same

proportions of labels as in the original dataset. One subset is used as testing data and
the union of the rest ones is used as training data. One run of k-fold cross validation
is the repeat k times of this process each with a new testing subset, and the accuracy
is estimated as the average of the accuracies of k£ runs. The experiments were designed

as follows

selection measures while fixing a pruning and a discretization technique.

use a large number of datasets;
use 10-fold stratified cross-validation with a random shufle of data;

implement studied techniques in a system based on the scheme of CLS;

to evaluate selection measures we run the system with different attribute

Eighteen datasets from the UCI repository of machine learning databases were used.

Experimental results are reported in Table 2 in which included the following information
o the letters c, g, ¥ and R stand for gain-ratio, gini-index, x? and R-measure,

respectively (first column).
o datasets features: name, number of attributes X number of instances,
numeric, symbolic or mix data;

the size of trees before and after pruning (even columns);

the error rates on testing data before and after pruning (odd columns);

Table 2. Ezxperimental results on attribute selection measures

unpruned pruned unpruned pruned
size Errors size errors size Errors size errors
Vote, 16x300, symbolic Cancer, 9x700, symbolic
c 22.6 + 2.5 7.3 + 3.6 4.0 + 0.0 5.0 + 2.8 87.9 4+ 23.1 7.3 2.2 46.1 4+ 19.1 7.4 + 2.9
g 24.7 £ 2.8 7.0 £ 3.0 7.0 £ 4.2 5.9 + 2.7 92.3 £+ 26.0 6.9 + 2.3 36.2 £+ 11.9 7.4 £ 35
X 24.7 £ 2.8 7.0 & 3.0 7.0 & 4.2 5.9 + 2.7 92.3 £ 26.0 6.9 + 2.0 36.2 £+ 11.9 7.4 + 3.5
R 25.0 + 3.0 7.5 £ 3.4 5.8 & 2.9 5.7 + 2.7 94.5 + 26.4 7.0 & 2.2 37.3 + 11.2 7.1 + 3.4
Shuttle, 9x956, symbolic Promoters, 45x105, symbolic
c 88.4 + 10.9 0.2 £ 0.1 53.4 + 15.8 0.2 + 0.1 18.2 £ 3.3 25.5 £ 9.8 9.8 + 4.3 245 £ 7.5
g 144.8 + 6.6 0.2 £0.1 114.2 £ 12.2 0.2 + 0.1 19.0 £ 4.0 23.6 £+ 12.7 9.4 + 3.7 22.7 + 10.0
X 199.0 £ 17.2 0.3 £ 0.1 162.7 £ 30.4 0.3 + 0.1 19.0 £ 4.0 23.6 &+ 10.9 9.4 + 3.7 22.7 + 10.0
R 165.3 + 15.6 0.2 + 0.1 135.3 + 18.3 0.3 + 0.1 19.0 + 4.0 23.6 + 12.7 9.4 + 3.7 22,7 + 10.0
Solar Flare, 12x1286, symbolic Diabetes, 8x768, numeric
c 104.0 £ 11.6 26.8 + 2.5 26.8 £ 7.8 25.3 + 1.5 41.2 £ 2.2 24.4 £+ 3.1 18.2 + 9.4 25.3 £+ 2.6
g 150.8 £ 15.0 28.4 £+ 2.9 54.4 £+ 15.0 27.8 + 1.3 53.0 = 4.4 25.3 £ 2.7 22.0 £+ 4.8 25.6 & 2.5
X 168.6 L 24.6 28.3 + 2.2 45.8 £ 18.1 26.6 + 2.0 47.6 £ 5.1 25.3 + 2.7 13.6 £+ 6.2 25.5 & 2.5
R 155.0 + 19.4 26.9 + 1.8 44.6 + 31.1 25.5 + 1.0 74.2 + 8.6 24.7 + 2.6 27.8 + 19.8 25.3 + 2.6
Splice, 45x3189, numeric Glass, 9x214, numeric
< 529.8 + 68.0 10,2 £ 1.8 245.8 £ 36.8 g.0 + 1.7 21.0 +£ 3.2 33.2 + 8.6 17.3 £ 5.5 24,5 + 8.2
g 565.8 + 72.0 10.4 + 2.4 214.6 4 39.8 8.4 + 1.8 35.2 + 4.4 33.2 £ 7.7 22.3 + 6.9 36.8 + 6.8
X 585.8 + 76.0 10.5 £ 2.4 253.0 £ 56.8 8.8 + 1.7 29.6 + 2.8 35.0 & 5.6 19.1 £ 7.5 37.3 £ 6.4
R 569.8 + 77.4 11.0 £ 2.5 207.4 £ 30.4 8.6 + 1.9 32.2 + 5.8 34.1 £ 7.3 18.7 + 6.8 35.9 + 6.9
Waveform, 36x3195, symbolic Heart Disease, 13x270, mixed
c 1148.3 £ 179.5 28.9 £ 1.7 223.9 £ 72.9 25,7 £ 1.1 13.8 £ 5.4 25.6 + 4.1 8.8 + 3.8 25.6 = 4.1
g 1320.5 4 193.9 27.8 + 1.3 244.5 4+ 69.5 24.4 + 1.6 33.0 + 4.0 27.4 + 4.7 25.8 4+ 2.6 25.6 + 5.6
X 1355.7 + 185.0 28.4 + 1.6 340.6 £ 191.6 26.8 + 1.3 26.6 + 9.7 27.4 £ 4.7 9.0 + 3.2 26.3 + 4.9
R 1432.3 4+ 193.5 29.3 + 1.5 249.6 + 78.4 25.1 + 1.1 38.0 + 13.4 27.4 + 4.7 8.2 4+ 5.1 25.2 + 4.6
Vehicle, 18x846, numeric Hypothyroid, 25x3163, numeric
c 174.5 £+ 35.9 32.4 £ 5.2 131.9 £ 40.7 32.7 £ 5.1 22.6 + 2.5 1.1 + 0.4 11.8 £ 1.5 0.9 £ 0.4
g 222.8 + 38.4 31.9 £ 3.2 111.4 + 37.8 32.0 £ 3.7 49.2 + 5.4 1.3 £ 0.5 16.8 £ 3.7 0.9 £ 0.4
X 216.2 + 40.4 30.2 £ 3.9 111.4 £ 47.4 31.9 &+ 3.2 54.8 + 5.0 1.3 + 0.5 10.6 + 0.6 0.9 + 0.4
R 218.2 4+ 39.6 31.6 + 3.2 101.5 + 28.7 31.8 + 3.5 57.8 + 6.0 1.4 + 0.4 18.2 + 4.9 0.9 + 0.4
Audiology, 70x226, symbolic Cars, 8x392, numeric
c 49.8 + 9.0 29.6 £ 13.7 28.4 £+ 13.3 30.9 £ 11.0 32.3 £ 2.0 24.8 + 4.8 17.1 £ 9.5 26.0 = 2.0
g 68.2 + 12.4 29.6 + 11.5 37.0 4+ 16.0 30.9 £+ 11.9 44.7 + 10.3 24.0 £+ 4.8 21.4 + 8.5 26.8 + 5.2
X 93.9 + 22.3 44.3 + 8.9 66.9 + 14.9 45.2 + 8.7 41.8 + 8.8 23.8 £ 5.0 17.4 £ 9.1 26.5 + 5.2
R 72.1 + 10.3 28.3 + 10.9 41.3 + 13.4 29.1 + 11.7 44.6 + 12.5 24.2 + 5.1 21.8 + 12.8 25.2 + 4.8
Horse-colic, 28x368, numeric Pima-diabetes, 8x768, numeric
c 48.9 + 9.1 16.2 £ 3.8 8.2 + 4.1 14.3 £+ 5.1 34.3 £ 6.7 24.9 £ 4.5 17.6 + 5.8 23.4 + 3.6
g 86.4 + 19.1 17.8 £ 1.9 30.9 4+ 20.3 16.8 + 3.5 45.4 4+ 3.5 24.7 + 4.2 25.4 + 8.3 23.5 + 3.5
X 92.0 + 25.8 18.1 £ 2.3 22.0 £+ 22.4 17.0 £ 3.3 40.0 £+ 4.2 24.7 + 4.2 18.5 £+ 9.0 23.5 + 3.5
R 115.6 £ 22.7 17.0 £ 1.7 15.8 £ 13.7 15.9 + 4.2 65.1 + 8.5 24.7 + 4.2 30.6 + 17.4 23.9 £ 3.2
Segmentation, 19x2310, numeric Iris, 4x150, numeric
c 327.4 £+ 48.2 6.3 £ 1.5 236.4 £ 46.5 6.2+ 1.6 4.3 £ 0.5 4.0 + 3.2 4.0 + 0.0 3.3 £ 3.3
g 341.3 £ 30.9 5.9 £ 1.7 257.5 £ 81.2 6.1 + 2.0 43 £ 0.5 3.3 + 3.3 4.0 £ 0.0 2.7 £ 3.2
X 373.2 £ 25.2 7.3+ 1.6 310.7 £ 48.3 7.6 £ 2.0 4.3 + 0.5 4.7 £ 3.7 4.0 £ 0.0 4.0 + 4.0
R 342.5 + 33.6 6.1 + 1.8 272.0 £ 90.4 6.1 + 2.1 4.3 + 0.5 4.7 £ 3.7 4.0 £+ 0.0 4.0 + 4.0




As error rates of pruned trees are of most importance, we indicate the lowest error
rate of pruned trees for each dataset among four measures by bold numbers. The error
rates of four measures on eighteen datasets are summarized in Table 3 and Figure 1.

Other information as the tree sizes, error rates before pruning in Table 2 can be
viewed as additional factors for evaluating methods. Some conclusions can be drawn

Table 3. Error rates of pruned trees for four measures

datasets Gain-Ratio Gini-Index x> R-measure
Shuttle 0.2 £ 0.1 0.2 £+ 0.1 0.3 +0.1 0.3 £ 0.1
Hypothyroid 0.9 £04 0.9 £ 0.4 0.9 £04 0.9 =£0.4
Iris 3.3+33 2.7 £+ 3.2 4.0 + 4.0 4.0+ 4.0
Vote 5.0 £ 2.8 5.9 £ 2.7 59 £ 2.7 5.7 £ 2.7
Breast cancer 74+29 7.4 +35 74+ 35 7.1+ 34
Segmentation 6.2 £ 1.6 6.1 & 2.0 7.6 £ 2.0 6.1 £ 2.1
Splice 8.0 £ 1.7 8.4+ 138 8.8 + 1.7 8.6 + 1.9
Horse-colic 14.3 + 5.1 16.8 £ 3.5 17.0 + 3.3 15.9 £+ 4.2
Waveform 25,7+ 1.1 244 £ 1.6 26.8 £ 1.3 25.1£1.1
Solar Flare 25.3 £ 1.5 27.8 £ 1.3 26.6 + 2.0 25.5 £ 1.0
Heart-disease 25.6 £ 4.1 25.6 £ 5.6 26.3 £ 4.9 25.2 £ 4.6
Diabetes 25.3 £ 2.6 25.6 £ 2.5 25,5 + 2,57 | 25.3 + 2.6
Promoters 245+ 75| 22.7 £ 10.0 | 22.7 £ 10.0 | 22.7 + 10.0
Pima-Diabetes | 23.4 £+ 3.6 23.5 £ 3.5 235+ 3.5 23.9 + 3.2
Vehicle 32.7+£ 5.1 320+£3.7| 31.9+327 | 31.8+£3.5
Audiology 309 + 11.0 30.9 £ 11.9 452 £ 8.7 | 29.1 + 11.7
Glass 34.5 £ 8.2 36.8 + 6.8 373+ 6.4 35.9 £ 6.9
Cars 26.0 £ 2.0 26.8 £ 5.2 26.8 £ 5.2 25.2 £ 4.8

from our various experimental results reported in Table 2, Table 3.
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Figure 1. Graphical representation of error rates of pruned trees



e For pruned trees, the numbers of datasets on which each measure attains the
lowest error rate are 9 (gain-ratio), 6 (gini-index), 2 (%?) and 9 (R-measure), and
the smallest size are 11 (gain-ratio), 2 (gini-index), 5 (x?) and 5 (R-measure).
These results verified that though certain methods are very good but they are not
always the best, and it may be necessary to select the most suitable technique in
certain applications of decision tree induction. Our easy-to-use system described
in next section aims at supporting this selection.

o Careful experimental results show that R-measure is a good one. Evaluating
together with the most widely used and stable measures, R-measure attains rea-
sonably comparable error rates in various datasets. This allow us to believe in
the high performance of R-measure and its application potential.

3 Unsupervised Discovery of Knowledge

3.1 Concept Representation and Clustering

The basic task of acquiring knowledge in this situation is that from a given set of unla-
belled instances to find simultaneously a hierarchical clustering that determines useful
object subsets and intensional definitions for these subsets of objects. Essentially, un-
supervised concept learning methods differ from each other in two factors of views on
concepts and constraints of categorization. Among views on concepts, the classical,
prototype and exemplar ones are widely known and used. Among categorization con-
straints, the similarity, feature correlation, and structure of the concept hierarchy are
widely known and used. The learning system OSHAM proposed in [14], which employs
the classical view on concepts, and is able to form effectively a concept hierarchy from
unlabelled data. Essentially, OSHAM searches to extract a good concept hierarchy by
exploiting the structure of Galois lattice of concepts as the hypothesis space. OSHAM
has been extended to a hybrid system that allows obtaining a higher performance by
combining its original view on concepts with the prototype and exemplar views [15].

Instead of characterizing a concept only by its intent and extent, OSHAM represents
each concept ()}, in a concept hierarchy M by a 10-tuple

< Z(Ck)7 f(Ck)v S(Ck)> Z(Ck)7 e(Ck)7 d(Ck)7p(Ck)7 d(CI:)vp(CI:'Ck)v Q(Ck) > (4)

where

- 1(C}) is the level of Cy in H;

- f(Cy) is the list of direct superconcepts of Cy;

- 8(Ch) is the list of direct subconcepts of Cy;

- i(Cy) is the intent of C}, (set of all common properties of instances of C);
Cy) is the extent of C (set of all instances satisfying properties of i(C}));

Cr)

p(C}) is the occurrence probability of Cy;

- d(C}) is the dispersion of local instances of Cj which are not classified into

subconcepts of C;
- p(C7|Cy) is the conditional probability of these unclassified instances of Cy;
- q(Cy) is the quality estimation of splitting C} into subconcepts Cy,.

1
D

is the dispersion between instances of Cy;

(
- d
(
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Explanation and analysis of this hybrid representation can be found in [15]. Below
is an example of concepts discovered by OSHAM

CONCEPT 43

Level = 5, Super_Concepts = {29}, Sub_Concepts = {52, 53}
Features = (Uniformity of Cell Size, 1) A (Bare Nuclei, 1) A (Bland Chromatin, 1) A
(Uniformity of Cell Shape, 2)
Local_instances/Covered_instances = 6/25

Local_instances = {8, 127, 221, 236, 415, 661}
Concept_probability = 0.041666
Local_instance_conditional_probability = 0.240000
Concept_dispersion = 0.258848

Local_instance_dispersion = 0.055556
Subconcept_partition_quality = 0.519719

Table 5 presents the essential ideas of the main algorithm in OSHAM which allows
to discovering both disjoint and overlapping concepts depending on the user’s interests
by refining the condition 1.(a) and the intersection operation. In [16] we corrected and
improved the interpretation procedure for OSHAM introduced in [15] that combines
the concept intent, hierarchical structure information, probabilistic estimations and the
nearest neighbors of unknown instances.

Table 4. Framework for unsupervised induction

1. While C} is still splittable, find a new subconcept of it that corresponds to the hypothesis
minimizing the quality function ¢(Cjx) among 1 hypotheses generated by the following
steps
(a) Find a “good” attribute-value pair concerning the best cover of Cf.

(b) Find a closed attribute-value subset S containing this attribute-value pair.

(c) Form a subconcept C, with the intent is .S.

(d) Evaluate the quality function with the new hypothesized subconcept.

Form intersecting concepts corresponding to intersections of the extent of the new concept
with the extent of existing concepts excluding its superconcepts.

2. If one of the following conditions holds then C} is considered as unsplittable

(a) There exist not any closed proper feature subset.
(b) The local instances set C} is too small.

(¢) The local instances set C, is homogeneous enough.

3. Apply recursively the procedure to concepts generated in step 1.

3.2 Evaluation

A way to evaluate unsupervised learning system is to employ supervised data but hide
the class information in the whole learning and interpreting phases and use the class
information only to estimate the predictive accuracy. We employ this way to evaluate
unsupervised learning systems where the predicted name of each learned concept Cy
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is determined by the most frequently occurring name of instances in e(C}). With this
predicted name of learned concepts, the error rate of an unsupervised learning system
can be estimated as the ratio of the number of testing instances correctly predicted
regarding the predicted name over the total number of testing instances [18].

Table 5. Predictive accuracies of AUTOCLASS and OSHAM

datasets (;zzrlblclzc; inst. | class ‘égggs_ OSHAM
Wisconsin breast cancer 9 - 699 2 96.6 92.6
Congressional voting 17 - 435 2 91.2 93.7
Mushroom 23 - 8125 2 86.5 88.2
Tic-tac-toe 9 - 862 9 82.3 92.6
Glass identilication - 9 214 6 55.7 65.3
Tonosphere - 35 351 2 91.5 84.6
Waveform - 21 300 3 59.2 73.0
Pima diabetes - 8 768 2 68.2 72.7
Thyroid (new) disease - 6 215 3 89.3 84.6
Heart disease cleveland 8 5 303 2 49.2 60.8

Table 5 report the predictive accuracies of AUTOCLASS [3] and OSHAM, esti-
mating on ten datasets from the UCI repository of machine learning databases. The
numbers of attributes (discrete and continuous), instances and “natural” classes of these
datasets are given in columns 2-5.

All experiments on these datasets are carried out with 10-fold cross validation. For
AUTOCLASS, we use the public version AUTOCLASS-C implemented in C and run
three steps of search, report and predict with the default parameters. The predicted
name and predictive accuracy of AUTOCLASS and OSHAM are obtained as mentioned
above. Some conclusions can be drawn from these experiments.

e The predicted name obtained in OSHAM and AUTOCLASS by the majority
of occurring name of instances in concepts is different from the concept name
obtained in supervised learning (e.g., C4.5) using the pruning threshold based on
the class information. An unsupervised concept in the worse case may contain
nearly equal numbers of instances belonging to different natural classes, and an
unsupervised classification may be failed in distinguishing very similar instances.
It explains that while the predictive accuracies between these supervised and
unsupervised methods look not so different, they are slightly different in nature.

e The predictive accuracies of OSHAM and AUTOCLASS in these experiments are
only slightly different. In these first trials, each system is better in several datasets
and these two systems can be considered having comparable performance.

¢ One advantage of OSHAM is its concept hierarchies can be easily understood by
its extended classical view on concepts and the graphical support.
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4 An Interactive-Graphic Environment

We address the improvement and implementation of CABRO and OSHAM in order to
deal with different situations of the practical use mentioned in section 1.

CABRO and OSHAM are originally designed for discrete attributes with unordered
nominal values. We choose the discretization of continuous attributes into discrete ones
before learning process. For continuous attributes in supervised data, we employ the
recursive entropy minimization based on Minimum Description Length according to the
experimental analysis in [6]. For continuous attributes in unsupervised data, we use the
well-known k-means clustering [9]. In fact, for each continuous attribute the k-means
algorithm is applied to cluster its values into k& groups (k = 1,2,..., K). A criterion
based on within-class and between-class similarities with the Euclidean distance is used
to choose a value of k that corresponds to the best partition according to this criterion.
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Figure 2. Generating decision trees by CABRO

CABRO and OSHAM are originally designed for a nonincremental environment.
As the execution cost of CABRO is low even with large datasets, this program can be
applied effectively in an incremental environment by reapplying it for the whole updated
dataset. As the execution cost of OSHAM is relatively high, we have started to develop
INCOSHAM - an incremental algorithm derived from OSHAM - that extracts a concept
hierarchy from the hypothesis space with the Galois lattice structure. INCOSHAM
preserves the nonexhaustive search strategy of OSHAM and exploits only the relevant
part of the hypothesis space [17].
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Recently, by combining common features between the rough set theory and for-
mal concept analysis, a theory of rough concept analysis with the slogan “rough set
+ formal concept = rough formal concept” was introduced [21]. The rough concept
analysis provides a framework for representing and learning approximate concepts. In
this framework we developed unsupervised conceptual clustering method A-OSHAM,
inspired by OSHAM, for inducing concept hierarchies with their approximations [19].
Concept approximations allow us to refine the common outcomes of predicting unknown
instances.
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Figure 5. Generating hierarchies with overlapping concepts

Figure 2 shows a generated decision tree by CABRO and Figure 3 shows a main
screen of the interactive OSHAM with an overlapping concept hierarchy learned from
the Wisconsin breast cancer dataset.

We are investigating feature selection techniques to deal with irrelevant attributes,
or techniques to mitigate the noise effect, the missing data in a pre-treatment process
before using CABRO and OSHAM.

We are now integrating programs CABRO and OSHAM in a common system im-
plemented in the X Window on the workstation with the direct manipulation style
of interaction [11]. The conceptual architecture of the system is shown in Figure 4.
This system accepts input in various situations of application domains (e.g., Boolean,
symbolic, numeric attributes, nonincremental or incremental data, supervised or unsu-
pervised data) and results as output decision knowledge that can be used for KBSs.
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Figure 4. Conceptual architecture of the system

As introduced in subsection 1.3, the Tree Visualizer gives the users a graphical
view of both decision tree/concept hierarchy structure and the detail information of
each node, in spite of the size of the tree/hierarchy. To gain a full comprehension of the
tree/hierarchy, the user can navigate through tree/hierarchy structure, switch among
several view modes, or choose alternatively which parts of the tree/hierarchy to be
displayed.

In the interactive mode of operation, the users can easily make a concrete decision
tree/concept hierarchy building algorithm just by selecting a combination among var-
ious techniques for attribute selection, pruning and discretization problems, etc. The
cycle of changing parameters, generating tree/hierarchy, testing and comparing can
also be faster and more effective. Moreover, the users can take more control in the
building process by run it step by step, examine intermediate tree/hierarchy, backtrack
or go-forward in order to find a high potential trees/hierarchies with respect to the
categorization scheme.

5 Conclusion

We have briefly presented the main ideas of our current project for knowledge discov-
ering in databases which is based on two methods CABRO and OSHAM. The relevant
domains for CABRO and OSHAM probably are those with one-step classification and
prediction tasks, or with some form of multi-step inference or problem solving. With
the high prediction accuracy of CABRO and OSHAM and the effectiveness of the
interactive-graphic environment as illustrated in this paper, we expect that the project
will achieve its ultimate goals and provide an environment for discovering high-quality
knowledge in data with low-cost.
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