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Abstract: Though most knowledge discovery methods have been developed
for supervised data, the task of finding knowledge from unsupervised data often
arises in real-world situations. Without feedback about the appropriateness
of discovered knowledge as in supervised systems, techniques for unsupervised
knowledge discovery are essentially different and still much less developed than
those for supervised discovery. In this paper we present a method for discover-
ing and using classificatory knowledge from unsupervised data. We first extend
the classical view on concepts commonly used in the framework of the Galois
lattice by combining it with the prototype and exemplar views, and develop
an algorithm for inducing concept hierarchies. We then introduce a procedure
that combines matching approaches in inductive learning with case-based rea-
soning in order to classify unknown cases using discovered knowledge. We
present the implementation of the method as an interactive system. An ex-
perimental comparative study of some knowledge discovery systems in terms
of knowledge description and prediction shows advantages and the application
potential of the method in decision making.

Keywords: knowledge discovery, unsupervised data, views on concepts, con-
cept hierarchy, matching approaches, case-based reasoning.

1 Introduction

As knowledge is of central importance in intelligent systems, to acquire useful
knowledge is one crucial problem in the development of knowledge-based decision
support systems [7], [30]. Recently, knowledge discovery in databases (KDD) has
emerged as a rapidly growing interdisciplinary field that merges together techniques
of databases, statistics and machine learning in order to find useful knowledge from
databases, and KDD has shown its application potential in various domains [8], [10].

Knowledge discovery techniques depend entirely on the degree of supervision in
data. Most early work in knowledge discovery focused on the supervised task that
aimed at finding descriptive knowledge of concepts given their labelled instances.



Supervised discovery methods are always driven by feedback about the appropriate-
ness of discovered knowledge obtained from classified data. Moreover, knowledge
discovered from supervised data is often represented in flat structures such as con-
junctions of conditions [26], production rules [6], or in the decision tree structure [3],
[28], that lead to relatively simple ways of using knowledge (final rules or leaf nodes
in decision trees) in predicting classes of unknown cases. However, in real-world situ-
ations the unsupervised discovery task can also arise quite often that aims at finding
in databases “natural” classes with their descriptions where no feedback about the
appropriateness of discovered knowledge can be obtained from data. Essentially,
unsupervised knowledge discovery concerns two mutual problems: (1) hierarchical
clustering (i.e., finding a hierarchy of useful subsets of unlabelled instances), and
(2) characterization (i.e., finding an intensional definition for each of these instance
subsets). In consequence, knowledge from unsupervised data seems suitably to be
discovered in hierarchical structures such as concept hierarchies that influence the
ways of predicting unknown cases, as in which many concepts can be detected and
used at intermediate levels [17].

Techniques of unsupervised discovery are essentially characterized by the search
for regularities in data and are still much less developed than those of supervised
discovery [22]. Basically, unsupervised discovery methods depend strongly on how
concepts are understood and represented. Among views on concepts in cognitive
science and machine learning, the classical, prototype and exemplar ones are widely
known and used [19], [31]. Moreover, unsupervised discovery systems compose so-
lutions to the problem by employing one or more of three main categorization con-
straints based on similarity, feature correlation [12], and syntactical structure of the
concept hierarchy [24]. The properties of concepts, main strengths and limitations
of views on concepts and categorization constraints are given in Table 1 which are
summarized from [19], [31], [33].

COBWEB [9] and AUTOCLASS [5] are often referred to as typical unsuper-
vised learning methods which employ the probabilistic (prototype) representation
for concepts. COBWEB organizes data so as to maximize inference ability, and
AUTOCLASS uses a Bayesian method for determining the optimal classes. CLUS-
TER/2 [26] is one early influential conceptual clustering method that employs the
classical view on concepts to form categories with ’good’ conjunctions of common
features to all category members. Recently, using the classical view on concepts in
the Galois lattice structure, several concept learning systems have been developed.
In system GALOIS [4] and in [11], all possible concepts in the Galois lattice are
incrementally generated. Although the Galois lattice provides a powerful structure
for discovering concepts, this framework has considerable limitations in KDD where
the user has to deal often with large databases. To find all possible formal concepts
is perhaps not always tractable as in the worse case the number of concepts can be
exponential in the size of O and A. For example, with the commonly used data set
Congressional voting of 435 instances described by 16 attributes, the Galois lattice
consists of about 150,000 nodes that reaches the space limit of a Sparcstation LX
equipped with 32 Mbytes of RAM and the execution time increases dramatically
[4]. Moreover, the classical representation of concepts in the Galois lattice does not



capture typicality effects and vagueness. In [16], an alternative approach to hierar-
chical conceptual clustering is proposed which extracts a part of the Galois lattice
in the form of a concept hierarchy.

As analysed in [31], each system relying on a single view on concepts has several
limitations in capturing the rich variety of conceptual knowledge. Therefore, hy-
brid systems attempt to improve the concept learning process by combining fairly
different theoretical views on concepts and constraints of categorization.

Features listing

— Nonnecessary features:
— Disjunctive concepts:
— Relational information:
— Features as concepts:

Internal structure
— Typicality:
— Basic levels:

— Superordinate distance:

Categorization
— Unclear cases:
— Context effects:

— Multiple categorization:

features are true only for some/most of concept members.
perhaps no feature shared by all concept members.
features are about object’s function/relation to others.
features are not only atomic units of description.

concept members have different typical/representative roles.
many concepts are viewed at an intermediate level.
concept is not always rated most similar to its parents.

concept membership varies in different objects.
categorization depends on context (available information).
many categories could apply to an object.

Classical view
— strengths
— limitations

concepts are viewed by necessary and sufficient features
clear semantics, used by standard logic.

difficult to specify defining features in many cases,
does not capture typicality effects and vagueness.

Prototype view
— strengths
— limitations

concepts are viewed by most common or typical features
generality, flexibility.

does not preserve enough information,

does not address context effects and explain concept coherence.

Ezemplar view
— strengths
— limitations

concepts are viewed by individual examples
conserve information and context sensitivity.
ignore generalization,

does not explain the concept coherence.

Similarity constraint
Correlation constraint
Structure constraint

categories consist of similar objects
maximize intra-correlations and minimize inter-correlations
syntactical structure of the entire conceptual system

Table 1. Properties, views on concepts and categorization constraints

The two primary goals of discovery systems in practice are description and pre-
diction [8]. Description focuses on finding human-interpretable patterns describing
the data, and relates to the understandability of knowledge. Prediction involves
using some variables or fields in the database to predict unknown or future values



of other variables of interest. The first lesson learned from real databases in [5] is
that “discovery of patterns in data is only the beginning of a cycle of interpretation
followed by more testing”. Though how to use results of knowledge discovery in
prediction is an important issue in practice [22], there has been so far little work in
KDD associated with procedures for exploiting discovered knowledge, e.g., [1], [34].

Current discovery systems do not always equal the human ability in identifying
useful concepts, and as the search problem in such a complex process requires much
background knowledge and heuristics, the human factor in discovery process is al-
ways necessary. Without feedback obtained from data about discovered knowledge,
unsupervised discovery systems cannot produce maximally useful results when oper-
ating alone. The ability to interact with the user allows considerable improvements
in the performance of discovery systems [20], [23], [35].

The motivation of this work is to extend and develop the unsupervised discov-
ery method OSHAM introduced in [16], according to the aspects mentioned above.
Three themes about discovering knowledge, using knowledge, system implementa-
tion and evaluation will be addressed in this paper. In section 2, we enrich the
classical view on concepts in the Galois lattice by several features of the prototype
and exemplar views, and develop an algorithm for inducing a concept hierarchy from
the Galois lattice. In section 3 we propose a procedure for using discovered knowl-
edge to classify unknown cases based on an integration of matching approaches in
inductive learning with case-based reasoning. In section 4 we present the implemen-
tation of method in the X Window with the direct manipulation style of interaction,
and an experimental comparative study of some knowledge discovery methods in
terms of knowledge description and prediction accuracy. In section 5 we address the
application potential of the method in decision making and conclusions.

2 Discovering knowledge from unsupervised data

2.1 Representing concepts

A database is a collection of data organized logically into files or tables of fixed-
length records (objects), described by a set of attributes. Each attribute is defined
with a set of potential values known as its domain. Information about attributes
and their domains is often maintained in a separate data dictionary. Each record
is an ordered list of values, one value for each field. A tuple is a conjunction of
attribute-value pairs.

For simplicity of representation, we limit ourselves in considering a single re-
lational database. Denote by O the set of all objects (records), A the set of all
attributes, and 7 the set of all possible tuples in the database. For any object
subset X C O, the largest tuple common to all objects in X is denoted by A(X).
For any tuple S € 7, the set of all objects satisfying S is denoted by p(S). A tuple
S is closed if \(p(S)) = S.

The basis of the most widely understanding of a concept is the function of col-
lecting individuals into a group with certain common properties. One distinguishes
these common properties as the intent of the concept that determines its extent



which are objects accepted as members of the concept. Formally, a concept C in
the classical view is a pair (X,5), X C O and S C 7, satisfying p(S) = X and
AMX)=S. X and S are then called extent and intent of C, respectively. Concept
(X2, S2) is a subconcept of concept (X7, S1) if Xo C X; which is equivalent to Sy D 57,
and (X1, S;) is then a superconcept of (Xz,S;). For simplicity of representation, we
sometimes call the direct superconcepts (father concepts) and the direct subconcepts
(son concepts) of a concept by superconcepts and subconcepts, respectively.

It was mathematically shown that the set of all possible concepts associated with
the superconcept-subconcept relation has the structure of a complete lattice (called
also the Galois lattice), and X and p define a Galois connection between the power
sets p(O) and p(A), i.e., they are two order-reversing one-to-one operators [32]. To
overcome the limitations of the classical representation of concepts in the (Galois
lattice, we enrich this representation by adding several components based on the
prototype and exemplar views on concepts that allow dealing better with typical or
unclear cases in the region boundaries, and propose a clustering method to extract
a concept hierarchy in the Galois lattice of possible concepts.

A concept hierarchy H is a part of the concept lattice satisfying the following
properties (1) the root concept (O, A\(O)) € H; (2) if C; = (X1, 51), Co = (X3, S) €
H and X; N X, # & then either €] is a subconcept of (5 or (5 is a subconcept of
Ci. Note that the property ({0}, A(0)) € H for every o € O in the usual definition
of the hierarchy structure is not necessarily required here as for the generalization
purpose many concepts at high levels need to be pruned.

A concept hierarchy is formed by OSHAM in the top-down direction with dif-
ferent levels of generality, from the most general (root concept) to the most specific
concept (leaf concept) in each branch. Associated with each concept Cj, are the level
I(Cy), two lists of its direct superconcepts f(Cy) and direct subconcepts s(Cy). The
intent ¢(Cy) is inherited by all subconcepts Cj, of Ci, and thus the intent of each
subconcept Cj, is the conjunction of i( C;) with selected attribute-value pairs. The
extent e(C}) is classified into extent of its subconcepts Cy,, Cj,, ..., Ci, at higher
levels in the process of analyzing C} into subconcepts. In fact, this is a process of
searching for regularities among instances of Cj, for determining good non-necessary
features that correspond to useful subconcepts of Cj. In this process it may happen
that some instances of Cj, do not satisfy features of any subconcept Cj,, and so will
not be classified as instances of any subconcept C},. We call these local instances of
Cy and denote this set by C) = e(Cy) \ Uiz e(Cy, ). In fact, OSHAM splits each
concept C}, into subconcepts until the set ¢} satisfies some unsplittable conditions.
The probability of occurrence p(Cy) of Cy and the conditional probability p(C; | C)
of local instances in €}, are of interest as they will be used later in the prediction of
unknown instances.

Without class attribute to drive the search, unsupervised discovery techniques
often exploit the relation between intra-similarity and inter-similarity among con-
cepts. The distance §(0,, 0,) between two instances o, and o, is defined as an



extension of Jaccard distance [2], suitably in the Galois lattice

Eae)\({op,oq}) v(a)
2 aex{opuA{ogh) V(@)

5(0p, 0) = 1 - (1)

where y(a) € Z7 are positive integer weights of attributes a (with value 1 by default).
The attribute weights y(a) embody background knowledge about the environment
and concepts (importance of attributes, attribute rank by potential relevancy, etc.).
The dispersion d(Cj,) between instances in e(Cy), considered as the inverse of the
homogeneity of e( C,), is defined as the average distance between all pairs of instances
in e(Cy)

N 2 X Eop,oqee(ck) 6(0]37 OQ) (2)

| e(Cr) | x| e(Ci) — 1]

If Cj, is a non-leaf concept, its local instances in €] may be considered to be more
typical and representative than its instances classified into subconcepts C},. As an
instance o is a member of different concepts along a branch in the concept hierarchy,
the concept Cj, that o € C7 is of particular interest. If C}, is a leaf concept, we have
e(Cy) = C] and its instances are all considered having the same representative role.

The extent of all direct subconcepts Ct,, Cy,, ..., Cp, of Cp and the set of local
instances C] form a partition P of e( Cy). Denote by W(C}) the average of all d(Cy,)
and d(C7). The dissimilarity between subconcepts of Cy, denoted by B(Cy), is
defined as the average of distances A(c(Cy, ), ¢( Gy, ) between all pairs (Cy,, Cy, ) € P,
where the distance A(c(Cy,), ¢(Cy,)) is determined as the smallest distance among
the distances of all pairs of instances o, € C, and o, € C’k].

A(c(C), c(Cy)) = Mmopecki’oqeckjé(op, 04) (3)

d( Cy)

The quality of splitting a concept Cj, into subconcepts in the next level, denoted
by ¢(C}), is measured by

¢(Cr) = W(Cy)/B(Ch) (4)

Summarily, OSHAM represents each concept Cj, in the concept hierarchy by a 10-
tuple of the following components

< U Cy), F(Cr), s(C), e(Cy), i( Cr), p(Cr), d(Cr), p(Cy | C), d(CY), q(Cr) > (5)

2.2 Discovering concept hierarchies

This discovery process is characterized by splitting recursively each existing con-
cept into subconcepts at higher levels without knowing a priori the number of
subconcepts. OSHAM tends to find a concept hierarchy with sufficiently general
and discriminant concepts represented by (5). This tendency lies in the fact that
the generality and discrimination of concepts are two dual characteristics, i.e., the
more general the less discriminant concepts. There is no way to estimate directly
the discrimination of concepts from unsupervised data, however the discrimination
ability concerns the partition quality and can be indirectly estimated, such as by the



similarity between-class and within-class of a partition. This similarity is estimated
based on different measures, as category utility in COBWEB [9], the intercorrela-
tion among variables in WITT [12], or formulas (1)-(4) in OSHAM. For each concept
Ck, in general there are many possible tuples derived from e(Cy) that can be used
to form subconcepts C},, and the quality of the corresponding partition according
to (4) differs greatly. OSHAM aims at extracting sequentially general subconcepts
Cy, (with large extent), but among the hypothesized tuples which may generate
hypothesized Cj, it selects which one that minimizes (4) in order to increase the
discrimination.

Input concept hierarchy H and an existing splittable concept Cj.
Result ‘H formed gradually.
Top-level  call OSHAM (root concept, @).

Variables  «,f,n are given thresholds.

Algorithm OSHAM(Cy,, H)

1. Suppose that Cy,,..., Ck, are subconcepts of Cj found so far. While (j is
still splittable, find a new subconcept Cj,,, of Cj that corresponds to the
hypothesis with minimal ¢(Cj) among n hypotheses Ck}z-}-l’”', Ck12+1' Each
hypothesis Ckrtl - is generated by doing the following steps (a)—(d)

(a) Find an attribute-value pair (a*, v*) so that Ui—; e(Ck,) U p({(a*, v*)})
is the largest cover of e(Cy).

(b) Find a maximal closed tuple S containing (a*, v*).

(¢) Form subconcept C'k;,;+1 with i(Ckrtl+1) = S and e(C’k%H) = p(9).

(d) Evaluate ¢(Cjy) with the new C’krtlﬂ.

Form intersecting subconcepts corresponding to intersections of extent of
Ch,,, With extent of existing concepts on H, excluding its superconcepts.

2. Update Cf = e(Cy) \ UM, e(Cy,). If one of the following conditions holds
then C}, is considered unsplittable

(a) There exist not any closed tuple in C}.
(b) |G| <a.
(c) d(Cy) < 8.
3. Apply OSHAM(Cy,, H) to each Cp, formed in the step 1.

Table 2: The OSHAM algorithm

Algorithm OSHAM described in Table 2 forms gradually and recursively a con-
cept hierarchy H, initially with the root concept whose extent is the set of all



instances of O and its intent is A(O) which is often empty. In each recursive appli-
cation to an existing splittable concept Cj,, OSHAM will split C} sequentially into
subconcepts Ci,, until an unsplittable condition holds. Conditions 2(a)-(c) deter-
mine whether the concept C}, is possible or worthwhile to split further. In particular,
2(a) ensures that there exists at least one admissible subconcept of Cy, 2(b) guaran-
tees to consider only concepts that cover at least a minimum number o of instances,
and 2(c) prevents splitting Cj when its local instances are rather homogeneous.

MazxCoverage(a*, v*, Ci, H)
Find (a*,v*) € T¢, satisfying
| Uizt e(Cr) U p({(a®, 0)}) |= mazievyere, | Uizr e(Cy) U p({(a,0)}) |
If this maximum holds at several (a¢*, v*) then choose arbitrary one (a*, v*) that
minimizes | Ji_; e(Cy, )Np({(a*,v*)}) | (referredto as the minimum intersection
condition).

MaxClosed Tuple(a*, v*, C, H)
(Find the closed tuple containing a given attribute-value pair (a*, v*)
Let S = {(a*,v%)}.

For every (a,v) € To, \ (a%, v) do if p({(a, 0)}) = p({(a", v*)})
then S = S A (a,v).

Closed Tuple( Cy,, H)

(Verify whether there exists a closed tuple in C})
1. Determine (a*, v*) that satisfies p({(a*,v*)}) = MAL(q0)e T, o({(a,v)})-
2. Determine the tuple S = {A(a,v) € T¢, | p({(a,v)}) = p({(a*,v*)})}.
3. If ¢(S) < 1 then return success with S else return failure.

IntersectionConcept(H,S)
(Form intersecting concepts from a given concept (p(S), S))

1. For every existing concept (p(S’),S’) on H, excluding superconcepts of
(p(S),8), if p(S) N p(S’) # @ then create the intersecting concept Cj =
(p(5"),5"). The extent p(S”) is the intersection of the extent of two con-
stituent concepts, p(S”) = p(S) N p(S’). The intent S” is the closed attribute
set found by procedure MaxClosedTuple (a*, v*, Cy,H) where (a*, v*) is one
attribute-value pair chosen arbitrarily from A p(S").

2. Apply recursively IntersectionConcept (H, S").

Table 3: The OSHAM algorithm

OSHAM is refined by several auxiliary procedures described in Table 3: 1(a) by
MazxCoverage (a*,v*, Cy, H), 1(b) by MazClosed Tuple (a*,v*, Cy, H), and 2(a) by
ClosedTuple (Cy, H). In these procedures, 7¢, stands for the set of attribute-value
pairs which are different from those used in the branch from the root concept to the



concept C} being considered, and ¢(S) = | p(S) | /| O | for S € 7. The inter-
section condition described in MaxCoverage and the procedure IntersectionConcept
allow OSHAM to discover overlapping concepts (Figure 1). By using the constraint
e(Cy,) N p({(a*,v*)}) = @ in MazCoverage, OSHAM is able as well to discover
disjoint concepts. The difference and benefits of disjoint and overlapping concepts
are addressed in more detail, e.g., in [9], [25]. In fact, the interactive-grahic system
OSHAM, described in section 4, is capable to discover both disjoint and overlapping
concepts according to the user’s interest and applications.

Algorithm OSHAM is originally described for discrete attributes with unordered
nominal values. In the current version, continuous attributes are discretized before
learning process by k-means clustering [13]. In fact, for each continuous attribute
the k-means algorithm is applied to cluster its values into k groups (k = 1,2, ..., K).
A criterion similar to (4) with the Euclidean distance is used to choose a value of k
that corresponds to the best partition according to this criterion.

3 Using discovered knowledge

Decision making is the process of choosing among alternative courses of actions
for the purpose of attaining a goal or goals [30]. In a decision tree obtained from
supervised data, all training instances are covered by leaf concepts and only leaf
concepts are considered as possible goals. In a concept hierarchy obtained from
unsupervised data, training instances are covered by either non-leaf concepts or leaf
concepts, and non-leaf concepts may also be considered as possible goals.

There are three broad classes of interpreters for discovered knowledge [22] which
can be applied to decision making. The logical approach carries out an “all or none”
matching process depending on whether the unknown instance satisfies the concept
intent. The threshold approach carries out a partial matching process and employs
some threshold to determine an acceptable degree of match. The competitive ap-
proach also carries out a partial matching process and selects the best competitor
based on estimated degrees of match. It is known that different interpreters can
yield different meanings for the same representation of concepts.

As the generality is decreased along branches of H, we say that a concept
matches an unknown instance e if (Y} is the most specific concept in a branch that
matches e intensionally (though all superconcepts of C; match e). Naturally, there
are three types of outcomes when matching logically H with e: only one concept
on H that matches e (single-match), many concepts on H that match e (multiple-
match), and no concept on H that matches e (no-match). Most KDD works dealing
with the cases of no match and multiple-match employ a probabilistic estimation.
In particular, the measure of fit for no match cases and estimate of probability for
multiple-match cases in [27] have been widely adopted. Because of the nature of
knowledge obtained from unsupervised data, the logical match of the concept intent
does not always provide a decision with enough satisfaction. Based on different
case studies, we develop a decision procedure that combines matching approaches
in inductive learning with the minimum-distance classifier principle in case-based



reasoning [21]. In fact, this procedure uses the logical interpretation associated
with hierarchical structure information, the probabilistic estimation and the nearest
neighbors of unknown instances. The nearest neighbor of € in the object set O and
the concept in H to which it belongs, denoted by NN(e) and ¢[NN(e)], provide
useful information to be used to reduce the risk of decision in all cases of single-
match, multiple-match and no-match.

This decision procedure consists of two stages: (1) find all concepts on H that
match e logically (intensionally), and (2) decide among these concepts which one
matches e best. This procedure shares the same stages with the system POSEIDON
[1], [27] but functions differently.

In the second stage, we need to determine and compare the degree of match of
competitors, then choose the concept that matches e best. The satisficing degree of
decision depends on how good the decision is obtained. From various case-studies we
found that a concept Cj, matches e well (with a low error rate) if it satisfies a majority
of the following conditions: I(C}) is high, Cy is a leaf concept, p(C}) x p(CY) is high,
d(Cy) is low, d(C7) is low, and generally none of these conditions has a clearly
higher priority than the others. Formally, the following functions 7y, 71, 7p, Tp, T,
according to the above conditions, can be used to compare two concepts Cy, Cj
which match e intensionally:

5 (Cr, Cy) = { 0, if I(Cy)=1UCh) (6)
-1, if Z(Ck) < Z(Ch)

1, if Cp =leaf A Cp, # leaf
TL(Cr, Ch) = 0, if Cy =leaf A G, =leaf vV Cy # leaf A C), #leaf  (7)
-1, if Cy # leaf A Cp, = leaf

L, if p(G) x p(CF | C) > p(Ch) x p(CF | Cr)
7p(Cy, Cy) = { 0, if p(Cy) x p(Cf | Cp) = p(Ch) x p(Cy | Ch)  (8)
=1, i p(C) x p(CY | Cp) < p(Ch) x p(Cy | Ch)
Tp(Cr, C) = { 0, if d(Cy) = d(Ch) (9)
-1, if d(Ck)> d(Ch)
1, i d(Cp) < d(Cy)
TR(Ch, Ch) = { 0, il d(Cy)=d(Cy) (10)
S i (e > d(C))

The following heuristic function 7 compares the degree of match between C} and
C,. We consider that C, matches e better than C) if

T(Ck, Ch) = ‘9N X TN(CIm Ch) —|—9L X TL(Ck, Ch) +
0p X Tp(Ck, Ch) +0D X TD(Ck, Ch) +'9R X TR(Ck, Ch) > 0 (11)

10



where Oy,05,0p,0p,0r are positive weights for the importance of the level, leaf
concept, local instance conditional probability, concept dispersion, and local instance
dispersion (they are all set to be 1 by default).

Denote by ¢ the satisficing degree of decision, and by c[e] the concept that
matches e best. The procedure described in Table 4 relies essentially on the com-
parison, using the function 7, between concepts that match e intensionally and the
concept containing the nearest neighbor of e. In this decision procedure, different
symbolic values are assigned to the satisficing degree ¢ of decision. They reflect the
decreasing rank of decision satisfaction. For example, S; may be considered as “best
decision”, M; as “strong decision” while N; as “weakly accepted decision” and N,
as “no decision”. The interpretation for different values of ¢ depends on the judg-
ment of the user or domain experts. In order to support the user to make the final
decision, all concepts that match e intensionally with their associated information
as well as the best matched concept estimated by OSHAM are displayed in both
text and graphical forms as described in subsection 4.1.

Input concept hierarchy H and unknown instance e.
Result best matched concept cle] and associated satisficing degree ¢.
Variables o is a given threshold.

Procedure Matching(H, e, c[e], ¢)
If there is only one concept Cj € H that matches e intensionally then

if ¢c[NN(e)] = Cy then c[e] — Ci, ¢ — S
else if 7(C, c[NN(e)]) > 0 then c[e] — Ck, ¢ — S
else c[e] «— ¢[NN(e)],¢ — Ss.

If there are m concepts C;, , ..., C;,, € H that match ¢ intensionally then

Choose among them C;, satisfying 7(Cip, C;) > 0,V € {11,...,%m },
if C = ¢[NN(e)] then cle] — Cip., ¢ — M;

else if 7(Cy,, ¢c[NN(e)]) > 0 then cle] «— Cj , ¢ — Mo

else c[e] — ¢[NN(e)],¢ — Ms.

If there is not any concept that match e intensionally then

if 5(NN(e),e) < o then c[e] — ¢[NN(e)],¢ — Ny
else cle] = &, ¢ — Na.

Table 4: Decision procedure for an unknown instance

4 Implementation and evaluation

In order to support producing maximally useful results, OSHAM has been imple-
mented as an interactive-graphic system that we first describe in this section. We
then present a comparative evaluation of OSHAM with other methods in terms of

11



description and prediction. Generally, it is difficult to evaluate unsupervised discov-
ery systems as the class information is not available and so there is less agreement
on the evaluation methodology. In [9], a task of flexible prediction was introduced
which requires the system to predict the values of one or more arbitrary attributes
that have been excised from the test instances. Another way is to employ super-
vised data but hide the class information in the whole discovering and matching
phases and use the class information only to evaluate discovered knowledge [24].
We employ the latter to evaluate OSHAM with the predicted name of each discov-
ered concept Cj, is the most frequently occurring name of instances in e(Cj). By
this way, it is possible to compare the prediction of supervised and unsupervised
discovery systems.

4.1 An interactive knowledge discovery system

Recently, several interactive-graphic supervised discovery systems have been devel-
oped, e.g., [20], [23], [35]. We have implemented OSHAM in the X Window on a
Sparcstation with the direct manipulation style of interaction [14], that allows the
user to interact with OSHAM during the discovery process. As mentioned above,
OSHAM forms gradually concepts at different levels of generality in the top-down
direction, and the size and form of concept hierarchies depend on the parameters
a, 3 and 7. In contrast to discovery systems with implicit parameters, such as the
fixed pruning threshold in C4.5 [29], we share the view in [1] about the role of pa-
rameters in a discovery system that allows the user to explicitly modify them in the
discovery process.

With a non-interactive unsupervised discovery system, the user has to run it
independently at different times with various parameters, store all generated results,
then compare them and choose the most suitable one. Interactive OSHAM allows
the user to participate actively in the discovery process. The user can initialize
parameters to cluster data, visualize the concept hierarchy gradually, observe the
results and the quality evaluation, manually modify the parameters when necessary
before the system continues to go further to cluster subsequent data or backtrack
to regrow the concept hierarchy with respect to the categorization scheme [18].

Though a full comprehensive investigation on the sensitivity of the trade-off be-
tween prediction quality and simplicity of the concept hierarchies regarding the
various parameters goes beyond the scope of this paper, the main effects of param-
eters can be viewed. In principle, the smaller o and/or 3 the larger size of H, and
the larger n the higher quality of generated concepts on H.

Figure 1 shows a main screen of the interactive OSHAM in discovering over-
lapping concepts from the Wisconsin breast cancer data. The database, obtained
from the University of Wisconsin Hospitals, consists of observations of Benign and
Malignant cases (shown in the window “Wisconsin Breast Cancer Data”) on 9 sym-
bolic symptoms: Clump Thickness, Uniformity of Cell Size, ..., Mitoses, each has
10 possible values (shown in the window “Wisconsin Breast Cancer Attributes”).
The window “Parameters” shows the initialized parameters in this run. The main
browser window shows a part of the generated concept hierarchy. Each discovered
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concept corresponds to a small rectangle with some information and links to its
superconcepts and subconcepts. For example, information in the small rectangle
108 13, 2 (Cell Size,1)|indicates that its concept identifier in the generated order
is 108, the number of instances it covers is 13, the number of local instances is 2
(omitted for leaf concepts), and the local tuple is (Cell Size,1). All tuples in the
concept intent can be obtained by aggregating local tuples along the branch from
the considered concept to the root, for example i(Cios) = (Cell Size,1) A (Epithe-
lial,3) A (Nucleoli,1) A (Mitoses,1). The description of each concept can be seen
in the window “Class Description” by clicking on its sensitive rectangle, e.g., the
description of the concept number 108. OSHAM yields discovered knowledge in a
concept hierarchy or transform them into a rule base.
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Figure 1: Discovering overlapping concepts by the interactive OSHAM

There is a considerable distinction between concepts found by OSHAM in con-
trast to those from others, such as supervised system C4.5 [29], unsupervised systems
COBWERB [9] and AUTOCLASS [5]. C4.5 induces decision trees in which concepts
are represented only by their intent associated with a predicted error rate, and it
also need not to maintain intermediate concepts. Without the class information,
OSHAM needs to induce concepts with additional information as described in sub-
section 2.1. Concepts obtained by OSHAM also differ from those of COBWEB and

13



AUTOCLASS. COBWERB represents each concept C}, as a set of attributes a; asso-
ciated with a set of their possible values v;;, the occurrence probability of concept
P(Cy), and the conditional probability P(a; = v; | Ci) associated with each value
v;;. In AUTOCLASS, a concept (referred to as a class) is defined as a particular
set of parameter values and their associated model. A classification is defined as a
set of classes, the probability of each class, and two additional probabilities for each
hypothesized model: the model probability P(H) and the conditional parameter
probability distribution P(p | H). Below is an example of a concept in the output
file

CONCEPT 22

Level = 3
Super_Concepts = { 7 20 } Subconcepts = { 78 97 }
Concept_dispersion = 0.414614
Local_instance_dispersion = 0.582011
Subconcept_partition_quality = 4.063252
Concept probability = 0.092210
Features = { (Thickness,5)

(Adhesion,1)

(Mitoses,1)}
Local_instances(7) = { 63 163 234 269 477 480 612 }
Local_instance_conditional_probability = 0.120690

4.2 Evaluation of the predictive accuracy

As mentioned above we use the benchmark introduced in [24] for evaluating the
predictive accuracy of unsupervised discovery systems. It is worth mentioning that
multiple train-and-test experiments are much computationally expensive but give
more reliable evaluation than single train-and-test experiments. A k-fold cross-
validation is the process of doing & times a single train-and-test experiment then
average the results as the final evaluation. The data is divided into mutually exclu-
sive subsets of approximately equal size. In each experiment, one subset is taken as
testing data and the others as training data.

We carried out experiments on several databases from the UCI repository of
machine learning databases, including the Wisconsin Brest cancer, Congressional
voting, Mushroom, Tic-tac-toe with 10-fold cross validation and Monks with sin-
gle train-and-test experiments. Table 5 gives information about the size of these
databases in terms of number of discrete and continuous attributes, number of in-
stances, and number of natural classes in the original data.

All experiments are carried out for four systems C4.5, CART, AUTOCLASS and
OSHAM in the same conditions, i.e., the same randomly divided data sets. The
predictive accuracies of C4.5 and CART are estimated directly by these programs
with fixed thresholds for the post-pruning. For AUTOCLASS, we use the public
version AUTOCLASS-C implemented recently in C language and run three steps
of search, report and predict with the default parameters. The predicted name
and predictive accuracy of AUTOCLASS are obtained by the same way of those in

14



OSHAM, i.e., the predictive accuracy is the ratio of the number of testing instances
correctly predicted regarding the predicted name of concepts over the total number
of testing instances. In order to have an unbiased evaluation of OSHAM, although
in each concrete database the user can adjust OSHAM’s parameters to obtain the
most suitable concept hierarchy, we fixed values o = 1% of the size of the training
set, 8 = 15%, and o = 10% of the number of attributes, and 7 = 3 in all experiments
of OSHAM.

| Data sets | discrete ‘ continuous ’ instances ‘ classes ‘
Breast cancer 9 - 699 2
Vote 16 - 435 2
Mushroom 23 - 8125 2
Tic-tac-toe 9 - 862 9
Glass - 9 214 6
Tonosphere - 35 351 2
Waveform - 21 300 3
Pima Diabetes - 8 768 2
Thyroid (new) - 6 215 3
Heart Disease 8 5 303 2

Table 5. Description of databases

Table 6 reports the results of predictive accuracy (%) of C4.5, CART, OSHAM
and AUTOCLASS (AUTOC), the average number of concepts in hierarchies and

CPU time of OSHAM. Some remarks can be drawn from the experimental results:

e The predicted name obtained by the majority of occurring name of instances
in the concepts of OSHAM and AUTOCLASS is different from the concept
name obtained in supervised discovery (e.g., C4.5) using the pruning threshold
based on the class information. An unsupervised concept in the worse case
may contain nearly equal positive and negative instances, and an unsupervised
classification may fail in distinguishing very similar instances. It explains that
while the predictive accuracies between supervised and unsupervised methods
look not so different, they are slightly different in essence.

e The complexity of OSHAM is O(] O || A |), and the concept hierarchy is
constructed by OSHAM in linear time in the number of instances and the
total number of attribute-value pairs. The average number of concepts in
concept hierarchies and CPU times (in second) of induction obtained by 10-
fold cross validation on the Sparcstation are also reported in two last columns
of Table 6. In comparison with the huge number of nodes and execution time
of the Galois lattice (e.g., Congressional voting), OSHAM provides a much
simpler solution with the reasonable prediction accuracy.

e Using two different representations of concepts, the predictive accuracy of
OSHAM and AUTOCLASS in these experiments are only slightly different.
AUTOCLASS is better than OSHAM in Breast cancer data, but vice-versa
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in Tic-tac-toe data. The main advantage of OSHAM in representing concepts
over the probabilistic representation is it maintains the concept coherence and
so its concept hierarchies can be easily understood.

\ | C45 | CART | OSHAM | AUTOC | Concepts | CPU times |
Brest Cancer 93.3 94.1 92.6 96.6 98 484
US Voting 94.5 93.8 93.7 91.2 69 151
Mushroom 100.0 100.0 88.2 86.5 63 1288
Tic-Tac-Toe 88.0 86.2 92.6 82.3 204 475
Glass 66.6 66.0 65.3 55.7 37 6.5
Tonosphere 91.5 88.3 81.2 91.5 110 64
Waveform 72.4 72.5 73.0 59.2 215 278
Pima Diabetes 71.2 72.2 72.7 68.2 39 72
Thyroid (new) 91.1 90.3 84.6 89.3 19 5
Heart Disease 59.5 52.4 58.4 49.2 65 13

Table 6. Predictive accuracies, number of concepts and CPU time of OSHAM

5 Conclusion

We have described the unsupervised discovery system OSHAM that combines dif-
ferent views on concepts and categorization constraints in discovering knowledge.
We have also developed a decision procedure by integrating interpreters in inductive
learning with case-based reasoning that allows using discovered knowledge to decide
the class of unknown instances with the satisficing degree. The main contribution
of this work lies in the enrichment of the classical views on concepts, its way of
finding and using knowledge which is different from other approaches in the KDD
literature. Moreover, it has been implemented as an interactive and highly graphic
system that permits the interaction of the user with the system during the discovery
process and the interpretation of unknown cases. Careful experiments on different
databases show that OSHAM can find classificatory knowledge from data with high
predictive accuracy and understandability.

OSHAM has an application potential in business decision making, particularly
in the construction of knowledge-based decision support systems. Generated in the
hierarchical form and supported by the graphical browser, concepts discovered by
OSHAM can be easily understood and used in making decision for unknown cases.
They can be rewritten in hierarchical object knowledge bases by tools for knowledge-
based systems such as KEE, KAPPA, NEXPERT OBJECT, or used directly by the
generator TESOR [15]. Concepts discovered in the hierarchical structure by OSHAM
can also be transformed into the usual form of decision rules with some modification.
Summarily, OSHAM is amenable to business applications in which the user need to
construct knowledge bases from databases with low-cost and high-quality.
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