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Abstract. In this paper we propose a solution to the similarity measur-
ing for heterogenous data. The key idea is to consider the similarity of a
given attribute-value pair as the probability of picking randomly a value
pair that is less similar than or equally similar in terms of order relations
defined appropriately for data types. Similarities of attribute value pairs
are then integrated into similarities between data objects using a statis-
tical method. Applying our method in combination with distance-based
clustering to real data shows the merit of our proposed method.
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1 Introduction

Measuring similarities between data objects is one of primary objectives
in data mining systems. It is essential for many tasks, such as finding
patterns or ranking data objects in databases with respect to queries.
Moreover, measuring similarities between data objects affects significantly
effectiveness of distance-based data mining methods, e.g. distance-based
clustering methods and nearest neighbor techniques.

To measure the similarity for heterogenous data that comprise differ-
ent data types, quantitative data, qualitative data, item set data, etc.,
has been a challenging problem in data mining due to natural differences
among data types. Two primary tasks of the problem are (1) determin-
ing the same essential (dis)similarity measures for different data types
and (2) integrating properly (dis)similarities of attribute value pairs into
similarities between data objects. The first task is rather difficult because
each data type has its own natural properties that leads to itself particular
similarity measures. For example, the similarity between two continuous
value are often considered as their absolute difference meanwhile the sim-
ilarity between two categorical values is simply identity or non-identity of
these two values. Thus, it is hard to define one proper similarity measure



for all data types. Further, similarity measures for some data types are
so poor due to the poorness of data structure (e.g., categorial, item set).

To date, a few similarity measuring methods for heterogeneous data
have been proposed [?,?,?,?,?,?]. Their approach is to apply the same
similarity measure scheme for different data types, and then, dissimilar-
ity between two data objects is assigned by adding linearly dissimilarities
of their attribute value pairs or by distance Minkowski. In [?,?,?], the
authors measure the similarity between two values based on three factors:
position, span, and content where position indicates the relative position
of two attribute values, span indicates the relative sizes of attribute val-
ues without referring to common parts, and content is a measure of the
common parts between two values. It is obvious that similarities of value
pairs of different data types have the same meaning since they are all
based on these three factors. However, it is not hard to see that these
three factors are not always applicable or suitable for all data types. For
example, position arises only when the values are quantitative. Similar
to that, methods of [?,?,?] take sizes of union (the joint operation ⊗)
and intersection (the meet operation ⊕) of two values into account of
measuring their similarity. Obviously, these two operators are not always
suitable for all data types. For example, the intersection is not suitable
for continuous data since continuous values are often different and there-
fore, the intersection of two continuous values seems to be always empty.
In short, the methods [?,?,?,?,?,?] are based on factors or operators that
are required to be suitable for all data types. However, due to the nature
difference of data types, the factors or operators are hard to exist or not
discovered yet.

In this paper, we address the similarity measuring problem for hetero-
geneous data by a probability-based approach. Our intuition in similarity
for a value pair is that the more number of pairs that are less than or
equally similar, the greater their similarity. Based on the idea, we define
the similarity of one value pair as the probability of picking randomly
a value pair that is less similar than or equally similar in terms of or-
der relations defined appropriately for each data types. By this way, we
can obtain the same meaning similarities between values of different data
types meanwhile each of the similarities is still based on particular prop-
erties of the corresponding data type. After that, similarities of attribute
value pairs of two objects are then integrated using a statistical method
to assign the similarity between them.

This paper is organized as follows: the ordered probability-based sim-
ilarity measuring method for single attributes is described in Section 2.



The integration methods and an example are given in Section 3 and Sec-
tion 4. In section 5, we investigate characteristics of the proposed method.
Next, complexity evaluation and experiment evaluations in combination
with clustering methods to real data sets is shown in Section 6. Conclu-
sions and further works are discussed in the last section.

2 Ordered probability-based similarity measure for an
attribute

Let A1, . . . , Am be m data attributes where Ai can be any data type such
as quantitative data, qualitative data, interval data, item set data, etc.
Let D ⊆ A1 × . . .×Am be a data set and x = (x1, . . . , xm), xi ∈ Ai be a
data object of D. For each attribute Ai, denote ¹i an order relation on
A2

i where (x′i, y
′
i) ¹i (xi, yi) implies that value pair (x′i, y

′
i) is less similar

than or equally similar to value pair (xi, yi).

2.1 Ordered probability-based similarity measure

The first task of measuring similarity for heterogeneous data is to deter-
mine similarity measures for value pairs of each attribute. We define the
ordered probability-based similarity for value pair (xi, yi) of attribute Ai

as follows:

Definition 1. The ordered probability-based similarity between two val-
ues xi and yi of attribute Ai with respect to order relation ¹i, denoted by
S¹i(xi, yi), is the probability of picking randomly a value pair of Ai that
is less similar than or equally similar to (xi, yi)

S¹i(xi, yi) =
∑

(x′i,y
′
i)¹i(xi,yi)

p(x′i, y
′
i)

where p(x′i, y
′
i) is the probability of picking value pair (x′i, y

′
i) of Ai.

Definition 1 implies that the similarity of one value pair depends on
both the number of value pairs that are less similar than or equally similar
and probabilities of picking them. It is obvious that the more number of
less than or equally similar value pair one pair has, the more similar they
are.

As it can be induced from Definition 1, similarities of value pairs do
not depend on data types. They are based only on order relations and
probability distributions of value pairs. Hence, similarities of value pairs
have the same meaning regardless of their data types. In other hand, each



similarity is based on an order relation built properly for each data type.
Thus, the similarity measure still reserved particular properties of this
data type.

2.2 Order relations for real data

In the following we define order relations of some common real data types,
e.g. continuous data, interval data, ordinal data, categorical data, and
item set data.

– Continuous data: A value pair is less similar or equally similar to
another value pair if and only if the absolute difference of the first
pair is greater than or equal to that of the second pair.

(x′, y′) ¹ (x, y) ⇔ |x′ − y′| ≥ |x− y|
– Interval data: A value pair is less similar than or equally similar to

another value pair if and only if the proportion between the intersec-
tion interval and the union interval of the first pair is smaller than or
equal to that of the second pair.

(x′, y′) ¹ (x, y) ⇔ |x′ ∩ y′|
|x′ ∪ y′| ≤

|x ∩ y|
|x ∪ y|

– Ordinal data: A value pair is less similar than or equally similar to
another value pair if and only if the interval between two values of
the first pair contains that of the second pair:

(x′, y′) ¹ (x, y) ⇔ [x′..y′] ⊇ [x..y]

– Categorical data: A value pair is less similar than or equally similar
to another value pair if and only if either they are identical or values
of the first pair are not identical meanwhile those of the second pair
are:

(x′, y′) ¹ (x, y) ⇔
{

x′ = x, y′ = y
x′ 6= y′, x = y

– Item set data: Following the idea of Geist [?], the order relation for
item set value pairs that come from item set M is defined as follows:

(X,Y ), (X ′, Y ′) ∈ M2 : (X ′, Y ′) ¹ (X, Y ) ⇔





X ′ ∩ Y ′ ⊆ X ∩ Y

X
′ ∩ Y

′ ⊆ X ∩ Y

X ′ ∩ Y ⊇ X ∩ Y

X
′ ∩ Y ′ ⊇ X ∩ Y

It is easy to see that these order relations are transitive.



2.3 Probability approximation

Now we present a simple method to estimate the probability of pick-
ing randomly a value pair. Assuming that values of each attribute are
independent, the probability of picking a value pair (xi, yi) of Ai is ap-
proximately estimated as:

p(xi, yi) =
δ(xi)δ(yi)

n2

where δ(xi) and δ(yi) are the numbers of objects that have attribute value
xi, yi respectively, and n is the number of data objects.

3 Integration methods

The similarity between two data objects consisting of m attributes is
measured by a combination of m similarities of their attribute value pairs.
Taking advantage of measuring similarities of attribute value pairs in
terms of probability, we consider integrating similarities of m attribute
value pairs as the problem of integrating m probabilities.

Denote S(x,y) = f(S1, . . . , Sm) the similarity between two data ob-
jects x and y where Si is the similarity between values xi and yi of at-
tribute Ai, and f(.) is a function for integrating m probabilities S1, . . . , Sm.
Here we describe some popular methods for integrating probabilities [?,?,?].

The most popular method is due to Fisher’s transformation [?], which
uses the test statistic

TF = −2
m∑

i=1

ln Si

and compares this to the χ2 distribution with 2m degrees of freedom.
In [?], Stouffer et. al. defined

Ts =
m∑

i=1

Φ−1(1− Si)√
m

where Φ−1 is the inverse normal cumulative distribution function. The
value Ts is compared to the standard normal distribution.

Another P-value method was proposed by Mudholkar and Geore [?]

TM = −c
m∑

i=1

log
Si

1− Si



where

c =

√
3(5m + 4)

mπ2(5m + 2)

The combination value of S1, . . . , Sm is referenced to the t distribution
with 5m + 4 degrees of freedom.

In practice, probability integrating functions are often non-decreasing
functions. It means that the greater S1, . . . , Sm are, the greater S(x,y) is.
In particular, it is easy to prove that the mentioned probability integrating
functions are non-decreasing functions.

4 Example

To illustrate how the similarity between two data objects is measured us-
ing our method, consider the simple data set given in Table 1 that was ob-
tained from an user internet survey. This data set contains 10 data objects
comprising 3 different attributes e.g. age (continuous data), connecting
speed (ordinal data), and time on internet (interval data). Consider the
first data object ({26, 128k, [6..10]} and the second one {55, 56k, [7..15]},
the similarity between them is measured as follows:

Sage(26, 55) = p(23, 55) + p(55, 23) + p(25, 55) + p(55, 25) + . . . + p(57, 26)

=
1× 1
102

+
1× 1
102

+
1× 1
102

+
1× 1
102

+ . . . +
1× 1
102

= 0.18

Sspeed(128k, 56k) = p(14k, 128k) + p(128k, 14k) + p(28k, 128k)
+p(128k, 28k) + . . . + p(56k, > 128k) + p(> 128k, 56k)

=
2× 1
102

+
2× 2
102

+
2× 1
102

+
2× 2
102

+ . . . +
2× 1
102

+
2× 2
102

= 0.42

Stime([6..10], [7..15]) = p([5..10], [20..30]) + p([20..30], [5..10]) + p([5..10], [12..20])
+p([12..20], [5..10]) + . . . + p([3..7], [5..12])

=
1× 1
102

+
1× 1
102

+
1× 1
102

+
1× 1
102

+ . . . +
1× 1
102

= 0.76



Table 1. An example: a data set obtained from an user internet survey includes 10
data objects, comprising 3 different attributes e.g., age (continuous data), connecting
speed (ordinal data) and time on internet (interval data)

No. Age (year) Connecting Speed (k) Time on Internet
(hour)

1 26 128 [6..10]
2 55 56 [7..15]
3 23 14 [5..10]
4 25 36 [20..30]
5 56 > 128 [12..20]
6 45 56 [15..18]
7 34 28 [3..4]
8 57 28 [3..7]
9 48 14 [8..12]
10 34 > 128 [5..10]

Now we use Fisher’s transformation test statistic [?] to integrate
Sage, Sspeed and Stime :

TF = −2(lnSage + lnSspeed + ln Stime)
= −2(ln(0.18) + ln(0.42) + ln(0.76))
= 5.71

The value of the χ2 distribution with 6 degrees of freedom at point
5.71 is 0.456. Thus, the similarity between the first and the second objects,
S({26, 128k, [6..10]}, {55, 56k, [7..15]}), is 0.456.

5 Characteristics

In this subsection, we investigate characteristics and properties of our
proposed method. For convenience let us recall an important required
property of similarity measures that was proposed by Geist et. al. [?].

Definition 2. Similarity measure ρ : Γ2 → R+ is called an order-preserving
similarity measure with respect to order relation ¹ if and only if it holds
true for:

∀(x,y), (x′,y′) ∈ Γ2, (x′,y′) ¹ (x,y) ⇒ ρ(x′,y′) ≤ ρ(x,y)

Since order-preserving measures play important roles in practice, most
common similarity measures (e.g., Euclidean, Hamming, Russel and Rao,
Jaccard and Needham) possess the property with respect to reasonable
order relations.



Theorem 1. Similarity measure S¹i : A2
i → R+ is an order-preserving

similarity measure with respect to order relation ¹i if order relation ¹i

is transitive.

Proof. Denote Λ(xi, yi) the set of pairs which are smaller than or equally
(xi, yi)

Λ(xi, yi) = {(x′i, y′i) : (x′i, y
′
i) ¹i (xi, yi)}

Since ¹i is a transitive relation, for any two value pairs (xi1 , yi1)
and (xi2 , yi2), when (xi1 , yi1) ¹i (x2, y2) we have ∀(xi, yi) ∈ Λ(xi1 , yi1) :
(xi, yi) ¹ (xi1 , yi1) implies (xi, yi) ¹i (xi2 , yi2). This means (xi, yi) ∈
Λ(xi2 , yi2), and thus

Λ(xi1 , yi1) ⊆ Λ(xi2 , yi2) (1)

In other hand, we have

S¹i(xi, yi) =
∑

(x′i,y
′
i)¹i(xi,yi)

p(x′i, y
′
i) =

∑

(x′i,y
′
i)∈Λ(xi,yi)

p(x′i, y
′
i) (2)

From (1) and (2),

S¹i(xi1 , yi1) =
∑

(xi,yi)∈Λ(xi1
,yi1

)

p(xi, yi) ≤
∑

(xi,yi)∈Λ(xi2
,yi2

)

p(xi, yi) = S¹i(xi1 , yi1)

Thus, S¹i(., .) is an order-preserving measure. ¤

In practice, order relation ¹i are often transitive. Thus, the ordered
probability-based similarity measures for attributes are also order-preserving
similarity measures.

Denote A = A1×. . .×Am the product space of m attributes A1, . . . , Am.
We define the product of order relation ¹1, . . . ,¹m as follows:

Definition 3. The product of order relations ¹1, . . . ,¹m, denoted by∏m
i=1 ¹i, is an order relation ¹ on A2, for which one data object pair

is said to be less similar than or equally similar to another data object
pair with respect to

∏m
i=1 ¹i if and only if attribute value pairs of the first

data object pair are less similar than or equally similar to those of the
second data object pair

∀(x,y), (x′,y′) ∈ A2 : (x′,y′) ¹ (x,y) ⇔ (x′i, y
′
i) ¹i (xi, yi), i = 1, . . . , m

Proposition 1. The product of order relations ¹1, . . . ,¹m is transitive
when order relations ¹1, . . . ,¹m are transitive.



Proof. Denote¹=
∏m

i ¹i. For any triple data object pairs (x1,y1), (x2,y2),
and (x3,y3). if (x1,y1) ¹ (x2,y2), and (x2,y2) ¹ (x3,y3), we have

(x1,y1) ¹ (x2,y2) ⇔ (xi1 , yi1) ¹i (xi2 , yi2) ∀i = 1 . . .m

(x2,y2) ¹ (x3,y3) ⇔ (xi2 , yi2) ¹i (xi3 , yi3) ∀i = 1 . . .m

Since¹i is transitive for i = 1 . . . m, (xi1 , yi1) ¹i (xi2 , yi2) and (xi2 , yi2) ¹i

(xi3 , yi3) implies (xi1 , yi1) ¹i (xi3 , yi3). Hence (x1,y1) ¹ (x3,y3).
Thus,

∏m
i ¹i is transitive. ¤

Theorem 2. Similarity measure S : A2 → R+ is an order-preserving
similarity measure with respect to

∏m
i=1 ¹i when order relations ¹1, . . . ,¹m

are transitive and probability integrating function f is non-decreasing.

Proof. Denote ¹=
∏m

i ¹i, (x′,y′) and (x2,y2) two data object pairs.
We have

(x′,y′) ¹ (x,y) ⇔ (x′i, y
′
i) ¹ (xi, yi) ∀i = 1, . . . , m;

Since ¹i is transitive for i = 1, . . . , m, following Theorem 1,

S′i = S¹i(x
′
i, y

′
i) ≤ S¹i(xi, yi) = Si ∀i = 1, . . . , m

Since f is a non-decreasing function,

S(x′,y′) = f(S′1, . . . , S
′
m) ≤ f(S1, . . . , Sm) = S(x,y)

Since (x′,y′) ¹ (x,y) ⇒ S(x′,y′) ≤ S(x,y), S(., .) is an order-preserving
similarity measure with respect to

∏m
i ¹i. ¤

Theorem 3 says that if attribute value pairs of a object pair are less
similar than or equally similar to those of another object pair, the simi-
larity of the first object pair is smaller than or equally the similarity of
the second object pair in conditions that order-relations ¹1, . . . ,¹m are
transitive and probability integrating function f is non-decreasing.

6 Evaluation

6.1 Complexity evaluation

In this subsection, we analysis the complexity for computing similarity
for a value pair and for a two data objects described by m attributes.

The simplest way two measure the similarity between two values of
attribute Ak is to scan all value pairs of this attribute. By this way, the



complexity of measuring similarity for a value pair is obviously O(n2
k)

where nk is the number of values of attribute Ak. In practice, nk is of-
ten small (from dozens to a hundred) and therefore the complexity is
absolutely acceptable. However, nk may be large (up to n) when Ak is
continuous data. In this case, we design two especial methods for com-
puting similarity between two continuous values in O(log2 nk) or O(nk)
depending on memory space requirements.

Let denote Ak a continuous attribute with nk values a1, ..., ank
. As-

suming that a1 < ... < ank
.

Computing similarity for continuous data in O(log2 nk) In this
methods, we first sort n2

k value pairs. Then the similarity of value pair
(v, v′) at index i is simply the similarity of pair (u, u′) at index i − 1
plus the probability of getting (v, v′) and stored in vector S. After that
the similarity between any value pair can be referred from vector S in
O(log2 nk) by the binary search technique [?]. The method is rather con-
venient in sense of complexity since O(log2 nk) is so small even when nk

is very large. However, it requires O(n2
k) memory space.

Computing similarity for continuous data in O(log nk) Since
O(n2

k) memory requirement is out of today computer’s ability when the
number of values is up to hundred thousands or millions, the method of
computing similarity for value pairs in O(log2 nk) seems to be unrealistic
when facing with data sets describing by continuous attributes with large
numbers of values. In this part, we introduce the method required O(nk)
memory space and gives the similarity between two values in O(nk).

Theorem 3. Given a1, ..., ank
be a ordered values. For any value pair

(v, v′) and (ai, aj) with i ≤ j, it holds true
1. if (ai, aj) ¹ (v, v′), then (ai, at) ¹ (v, v′)when t ≥ j.
2. if (ai, aj) � (v, v′), then (ai, at) � (v, v′)when i ≤ t ≤ j.

Proof. 1. We have (ai, aj) ¹ (v, v′) ⇔ aj − ai ≥ |v − v′|. Since at ≥ aj

when t ≥ j, at − ai ≥ |v − v′|. Thus (ai, aj) ¹ (v, v′).¤

2. We have (ai, aj) � (v, v′) ⇔ aj − ai � |v − v′|. Since aj ≤ at ≤ ai

when i ≤ t ≤ j, at − ai � |v − v′|. Thus, (ai, at) � (v, v′).¤
From Theorem 3, it is easy to see that the similarity between two

values v and v′ can be computed as

Sim(v, v′) =
nk∑

i=1

p(ai)
nk∑

j=ti

p(aj) (3)



where ti is the smallest number that is greater than i and satisfies (ai, ali) ¹
(v, v′).

Based on equation 3, we build an algorithm for determining similarity
between two value (v, v′) (see Figure 1). It is not hard to prove that
the complexity for computing similarity between two values is O(nk) and
required memory store is O(nk).

Procedure Sim Determine
IN : two values v and v′.
OUT : Similarity of (v, v′)

BEGIN

1: i = 1, j = 1, sp = 1, Sim = 0
2: for i = 1 to nk do
3: while ((v, v′) ¹ (ai, aj)) and (j ≤ ni) do
4: sp = sp− p(aj)
5: j = j + 1
6: end while
7: Sim = Sim + p(ai) ∗ sp
8: end for
9: return Sim

END

Fig. 1. Algorithm for computing similarity between two continuous values in O(nk)

After obtaining similarities for m attribute value pairs of two data ob-
jects, it is not hard to prove that integrating these m similarities requires
O(m).

It is obvious that the complexity to measure a value pair of the pro-
posed measure is higher than O(m). However, in real applications, the
complexity is acceptable as the value number of each attribute is often
small or using the especial methods to reduce the complexity.

6.2 Evaluation with real data

In the following we analyze real data sets using our similarity measuring
approach in conjunction with clustering methods. We try to mine group
of users with particular properties from internet survey data.

Data set The Cultural Issues in Web Design data set was obtained from
the GVU’s 8th WWW User Survey (http://www.cc.gatech.edu/gvu/user surveys/survey-
1997-10/). The data set is a collection of users’s opinions on influences of
languages, colors, culture, etc. on web designs. The data set includes 1097



respondents, which are described by 3 item set attributes, 10 categorical
attributes, and 41 ordinal attributes.

Methodology

– Similarity measure method
We apply the proposed method to measure similarities between re-
spondents of the Cultural Issues in Web Design data set. We use the
order relations and the probability approximation method as men-
tioned in Section 2. We choose the Fisher’s transformation to integrate
similarities of attribute value pairs.

– Clustering method
A clustering method can be categorized into either partitioning ap-
proaches (e.g., K-means [?], Kmedoid [?]) or hierarchical approaches
(e.g., single linkage [?], complete linkage [?], group average linkage [?,?]).
Since partitioning approaches are not proper for noncontinuous data,
we choose agglomeration hierarchical average linkage clustering method,
which overcomes the chain problem of single linkage methods and dis-
cover more balanced clusters than complete linkage methods do.

Clustering results The Cultural Issues in Web Design data set was
clustered into 10 clusters. However, we present characteristics of only
three clusters due to space limitation, see Table 2. A characteristic of a
cluster is presented as an attribute value that majority of respondents of
the cluster answered. For example, value can’t write of attribute Unfamil-
iar site is considered as a characteristic of the first cluster because 92%
respondents of this cluster answered the value.

Discussion As it can be seen from Table 2, the clusters have many
characteristics, e.g. the first cluster has 13 characteristics, the third has
15 characteristics. Moreover, characteristics are different from cluster to
cluster. In particular, when visiting an unfamiliar site, the problem of
92% respondents of the first cluster is cannot write, while 81% respon-
dents of the second cluster is cannot translate, and 84% respondents of
the third cluster is cannot read. Moreover, answers of respondents in the
same clusters are somehow similar. For example, all respondents of the
first cluster can neither read Rabic and Hebrew nor speak Bengari and
Hebrew. In short, almost respondents in the same cluster have the same
answers but they are different from answers of respondents of different
clusters. The analysis of characteristics from these clusters shows that



our similarity measuring method in combination with the agglomeration
hierarchical average linkage clustering method discovers valuable clusters
of real data sets.

7 Conclusions and further works

We introduced a method to measure the similarity for heterogeneous data
in the statistics and probability framework. The main idea is to define the
similarity of one value pair as the probability of picking randomly a value
pair that is less similar than or equally similar in terms of order relations
defined appropriately for data types. Similarities of attribute value pairs
of two objects are then integrated using a statistical method to assign the
similarity between them.

The measure possess the order-preserving similarity property. More-
over, applying our approach in combination with clustering methods to
real data shows the merit of our proposed method.

However, the proposed method is designed for data sets whose data
objects have the same number of attribute values. In future works, we
will adapt this method for more complex data sets whose data objects
may have different numbers of attribute values.

Acknowledgments

We appreciate professor Gunter Weiss and Le Sy Vinh at the Heinrich-
Heine University of Duesseldorf, Germany for helpful comments on the
manuscript.

References

1. Gowda K. C. and Diday E. Symbolic clustering using a new dissimilarity measure.
In Pattern Recognition, 24(6):567–578, 1991.

2. Gowda K. C. and Diday E. Unsuppervised learning throught symbolic clustering.
In Pattern Recognition lett., 12:259–264, 1991.

3. Gowda K. C. and Diday E. Symbolic clustering using a new similarity measure.
IEEE Trans. Syst. Man Cybernet, 22(2):368–378, 1992.

4. Ichino M. and Yaguchi H. Generalized minkowski metrics for mixed feature-type
data analysis. IEEE Transactions on Systems Man, and Cybernetics, 24(4), 1994.

5. de Carvalho F.A.T. Proximity coefficients between boolean symbolic objects. In
E. et al Diday, editor, New Approaches in Classification and Data Analysis, vol-
ume 5 of Studies in Classification, DataAnalysis, and Knowledge Organisation,
pages 387–394, Berlin, 1994. Springer-Verlag.



6. de Carvalho F.A.T. Extension based proximity coefficients between constrained
boolean symbolicobjects. In Hayashi C. et al., editor, IFCS96, pages 370–378,
Berlin, 1998. Springer.

7. Geist S., Lengnink K., and Wille R. An order-theoretic foundation for similarity
measures. In Diday E. and Lechevallier Y., editors, Ordinal and symbolic data anal-
ysis, studies in classification, data analysis, and knowledge organization, volume 8,
pages 225–237, Berlin, Heidelberg, 1996. Springer.

8. Fisher R.A. Statistical methods for research workers. Oliver and Boyd, 11th edition,
1950.

9. Stouffer S.A, Suchman E.A, Devinney L.C, and Williams R.M. Adjustment during
army life. The American Solder, 1, 1949.

10. Mudholkar G.s and George E.O. The logit method for combining probabilities. In
J. Rustagi, editor, Symposium on Optimizing methods in statistics, pages 345–366.
Academic press, NewYork, 1979.

11. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill., the third edition, 2002.

12. MacQueen J. Some methods for classification and analysis of multivariate obser-
vation. In Proceedings 5th Berkeley Symposium on Mathematical Statistics and
Probability, pages 281–297, 1967.

13. Kaufmann L. and Rousseeuw P.J. Clustering by means of medoids. Statistical
Data Analysis based on the L1 Norm, pages 405–416, 1987.

14. Sneath P.H.A. The application of computers to taxonomy. Journal of general
microbiology, 17:201–226, 1957.

15. McQuitty L.L. Hierarchical linkage analysis for the isolation of types. Education
and Psychological measurements, 20:55–67, 1960.

16. Sokal R.R. and Michener C.D. Statistical method for evaluating systematic rela-
tionships. University of Kansas science bulletin, 38:1409–1438, 1958.

17. McQuitty L.L. Expansion of similarity analysis by reciprocal pairs for discrete and
continuous data. Education and Psychological measurements, 27:253–255, 1967.



Table 2. Characteristics of three discovered clusters

Cluster 1
No. Att. Names Value Pa Value Pa Value Pa Value Pa

1 Unfamiliar sites Can’t write 92 Other 8
2 Read Arabic None 100
3 Read Hebrew None 100
4 Speak Bengali None 100
5 Speak Hebrew None 100
6 Primary same as Native Yes 98 No 2
7 Important problem Can’t write 92 None 2 Other 6
8 American images None 79 Other 21
9 Native Language English 79 Chinese 4 German 4 Other 12
10 Read German None 71 Basic phrases 19 Native 8 Other 2
11 Software Yes both 73 Yes get 25 No 2
12 Speak English Native 69 Conver. 17 None 14
13 Provide native sites Agree strongly 69 Agree somewhat 23 Disag. somewhat 4 Other 4

Cluster 2
No. Att. Names Value Pa Value Pa Value Pa Value Pa

1 Unfamiliar sites Can’t translate 81 Other 19
2 Read Chinese None 100
3 Read Hindi None 100
4 Read Japanese None 100
5 Speak Hindi None 100
6 Due to culture No 93 Yes-both 8
7 Sites in non-fluent Few 89 None 9 Most 2
8 Non-English sites Few 89 None 8 Half 4
9 Translations Yes-useful 87 Other 13
10 Read German None 83 Basic phrases 9 Literate 8
11 Native Language English 81 Spanish 8 Arabic 2 Other 9
12 Speak German None 81 Basic phrases 11 Conver. 8
13 Designed culture Yes 70 No 28 Don’t know 2

Cluster 3
No. Att. Names Value Pa Value Pa Value Pa Value Pa

1 Unfamiliar sites Can’t read 84 Other 16
2 Read Arabic None 100
3 Read Chinese None 100
4 Read Hindi None 100
5 Speak Arabic None 100
6 Speak Bengali None 100
7 Speak Hindi None 100
8 Read Italian None 93 Basic phrases 4 Native 2 Other 2
9 Speak Italian None 93 Basic phrases 7
10 Speak Spanish None 84 Basic phrases 14 Conver. 2
11 Read Spanish None 82 Basic phrases 18
12 Sites designed for culture Yes 68 No 29 Dontknow 4
13 Sites in non-fluent Few 77 All 11 None 7 Other 5
14 Software Yes get 77 Yesboth 18 No 5
15 Non-English sites Few 68 None 21 Half 9 Other 2


