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Abstract. In the first year of my preparation for doctor thesis at INRIA in the
group of Edwin, I worked on the construction of an inference engine and a knowledge
base, by consulting various group members, for building an expert system guiding
the data analysis package SICLA of the group. One day, Edwin asked me whether
one can automatically generate rules for expert systems from data, and I started my
new research direction. Since that time, my main work has been machine learning,
especially finding rules in data. This paper briefly presents some learning methods
we have developed.

1 Introduction

Twenty years ago, machine learning was in its infancy with few work and
applications. The wave of artificial intelligence (AI) in early of years 1980s
has fostered the development of machine learning. From the joined work on
conceptual clustering with Michalski, Edwin found his interest in this young
field of machine learning (Michalski et al., 1983). As a doctor candidate in
his group at that time, he suggested if I can work on finding new ways to
generate rules for expert systems from data, instead of working as knowledge
engineers who try to acquire knowledge from human experts.

There have been a great progress in the field of machine learning. It
has become an established area with sound foundation, rich techniques and
various applications. Machine learning becomes one of the most active areas
in computer science. This paper briefly presents some of our main work in
machine learning since those days in the group of Edwin, from supervised
learning (Ho et al., 1988), (Nguyen and Ho, 1999), (Ho and Nguyen, 2003)
to unsupervised learning (Ho, 1997), (Ho and Luong, 1997), and some recent
work on text clustering (Ho and Nguyen, 2002), (Ho et al., 2002), (Le and
Ho, 2005), bioinformatics (Pham and Ho, 2007), kernel methods (Nguyen and
Ho, 2007).

2 Rule induction from supervised data

In this section we briefly present three supervised learning methods of CABRO1
(Ho et al., 1988), CABRO2 (Nguyen and Ho, 1999), and LUPC (Ho and
Nguyen, 2003).
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2.1 CABRO1

CABRO1 (Construction Automatique a Base de Regles a partir d’Observation)
is a method of rule induction from supervised data.

Let D1, D2, ..., Dp be p finite domains and D1 ×D2 × ...×Dp. Elements
of D are called objects and denoted by ω = (d1, d2, ..., dp) where dj ∈ Dj

for j ∈ J = {1, 2, ..., p}. A variable-value pair (Xj , dj) defines an elemen-
tary assertion AXj=dj that determines the set ωXj=dj of objects of D which
have the value dj ∈ {dj1, dj2, ..., djq} for the variable Xj : AXj=dj

: D −→
{true, false}, ω = (d1, ..., dp) 7→ AXj=dj

(ω) = true, if Xj(ω) = dj and
ω = (d1, ..., dp) 7→ AXj=dj (ω) = false, if Xj(ω) 6= dj .

We consider an assertion as a conjunction of elementary assertions: A =∧
(Xj , dj), j ∈ J ′ ⊆ J and dj ∈ Dj , where

∧
denotes the logical conjunc-

tion. An assertion A is a Boolean function from D −→ {true, false}, and it
is also the identification function for the set: ωA = {ω ∈ D | A(ω) = true}.

Variables correspond to j ∈ J ′ are said to be tied to the assertion. Vari-
ables correspond to j ∈ J \ J ′ are said to be free from the assertion. Number
of tied variables is called length of the assertion. One says also that assertion
A covers the set ωA. Assertion A is said to be more general than asser-
tion B iff ωB ⊆ ωA. Assertion A is said to be better than assertion B iff
card(ωA) > card(ωB). A is a representative assertion generated from an ob-
ject ω ∈ E if A is one of the best assertions formed by elementary assertions
generated from ω.

Denote < = <C ∪<′C the set of assertions to be found for C and C’. Natu-
rally, assertions generated for each concept, for instance C, have to satisfy two
following constraints: (1) Covering: Each observed object of the learning set E
has to be recognized by an assertion of <C : E ⊆ ⋃

A∈<C
ωA, and (2) Descrim-

inating: Assertions of C do not misrecognize members of E′ : ωA ∩ E′ = ∅.
It is clear that the less general an assertion, the more discriminant it is.

Depending on the data nature, one retains general but not perfect discrimi-
nant assertions or discriminant but not sufficient general assertions. The belief
measure µ(A) for the assertion A of C is estimated as the ratio of the number
of examples of C matched by A and the total number of examples of C and
C’ matched by A: µ(A) = card(ωA ∩ E)/card(ωA ∩Ω), (0 < µ(A) ≤ 1).

An assertion A is said β-discriminant if µ(A) ≥ β. In fact, instead of
finding discriminant assertions one finds β-discriminant assertions depending
on an acceptance threshold β (0 < β ≤ 1).

The main algorithm of CABRO1 is based on a general-to-specific search:
one starts from an ’empty’ assertion which is the ’most general’ because all
of its variables are free, then one ties the value Xj(ω) to this assertion so
that the assertion covers approximately a maximum number of objects of E
(the generality of the assertion will be diminished but it may remain non
β- discriminant). This phase is repeated with the remaining values until one
finds a β-discriminant assertion such that the next attempt does not improve
the covering of the assertion. We propose a dual algorithm of the CABRO1
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algorithm, based on a specific-to-general search strategy, in order to find a
representative assertion Aω from an object ω ∈ E. On the contrary with
CABRO1 algorithm, the dual algorithm starts from a ’full’ assertion which
is the ’most specific’ and covers only the object ω. One tries to increase its
generality and to diminish its speciality simultaneously in order to obtain a
representative assertion.

2.2 CABRO2

The starting point of rough set theory (Pawlak, 1991) is the assumption that
our “view” on elements of an object set O depends on an indiscernibility
relation among them, that means an equivalence relation E ⊆ O × O. Two
objects o1, o2 ∈ O are said to be indiscernible w.r.t E if o1Eo2. The lower
and upper approximations of any X ⊆ O, w.r.t. an equivalence relation E,
are defined as

E∗(X) = {o ∈ O : [o]E ⊆ X}, E∗(X) = {o ∈ O : [o]E ∩X 6= ∅}
where [o]E denotes the equivalence class of objects which are indiscernible
with o w.r.t the equivalence relation E. A subset P of the set of attributes
used to describe objects of O determines an equivalence relation that divides
O into equivalence classes each containing objects having the same values
on all attributes of P . A key concept in the rough set theory is the degree
of dependency of a set of attributes Q on a set of attributes P , denoted by
µP (Q) (0 ≤ µP (Q) ≤ 1), defined as µP (Q) = |⋃[o]Q

/P∗([o]Q)|/|O|.
If µP (Q) = 1 then Q totally depends on P ; if 0 < µP (Q) < 1 then

Q partially depends on P ; if µP (Q) = 0 then Q is independent of P . The
measure of dependency is fundamental in rough set theory as based on it
important notions are defined, such as reducts and minimal sets of attributes,
significance of attributes, etc.

This argument can be generalized and formulated for a measure of degree
of dependency of an attribute set Q on an attribute set P

µ′P (Q) =
1
|O|

∑

[o]P

max[o]Q |[o]Q
⋂

[o]P |

Theorem. For every sets P and Q of attributes we have

max[o]Q |[o]Q|/|O| ≤ µ
′
P (Q) ≤ 1

We can define that Q totally depends on P iff µ
′
P (Q) = 1; Q partially

depends on P iff max[o]Q |[o]Q|/|O| < µ
′
P (Q) < 1; Q is independent of P iff

µ
′
P (Q) = max[o]Q |[o]Q|/|O|.

Given two arbitrary attribute sets P and Q, we define R-measure for the
dependency of Q on P

µP (Q) =
1
|O|

∑

[o]P

max[o]Q

|[o]Q
⋂

[o]P |2
|[o]P |
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Learn-Positive-Rule(Pos, Neg, mina, minc) BestRule(Pos, Neg, α, β)

1. RuleSet = φ 11.CandRuleset = φ
2. α, β ← Initialize(Pos, mina, minc) 12.AttValPairs(Pos, Neg, α, β)
3. while (Pos 6= φ & (α, β) 6= (mina, minc)) 13. while StopCond(Pos, Neg, α, β)
4. NewRule ← BestRule(Pos, Neg, α, β) 14. CandRules(Pos, Neg, α, β)
5. if (NewRule 6= φ) 15. BestRule ←
6. Pos ← Pos \ Cover+(NewRule) First CandidateRule
7. RuleSet ← RuleSet ∪NewRule in CandRuleset
8. else Reduce(α, β) 16. return(BestRule)
9. RuleSet ← PostProcess(RuleSet)
10. return(RuleSet)

Fig. 1. The scheme of algorithm LUPC

When consider Q as the class attribute and P a descriptive attribute, we
can use µP (Q) as a measure for attribute selection in decision tree learning.
CABRO2 is the decision tree induction using R-measure that has performance
as high as state-of-the-art methods such C4.5 (Nguyen and Ho, 1999).

2.3 LUPC

LUPC (Learning Unbalanced Positive Class) is a separate-and-conquer rule
induction method to learn minority classes in unbalanced datasets. LUPC
consequently learns a rule set from Pos and Neg given user-specified mini-
mum accuracy threshold (mina) and minimum cover ratio (minc). We can
partially order the goodness of rules in terms of accuracy or support. Given
two thresholds α and β, 0 ≤ α, β ≤ 1, on accuracy and support of rules,
respectively. A rule R is αβ-strong if acc(R) ≥ α and sup(R) ≥ β. An αβ-
strong rule Ri is said better than an αβ-strong rule Rj with respect to α if
Ri has accuracy higher than that of Rj . An αβ-strong rule Ri is better than
an αβ-strong rule Rj with respect to β if Ri has support higher than that
of Rj . LUPC distinguishes three alternatives that occur in practice and that
lead to the three corresponding types of search heuristics:

1. Bias on rule accuracy: It is to sequentially find rules with cover ratio
equal and greater than minc but accuracy is as large as possible.

2. Bias on rule cover ratio. It is to sequentially find rules with accuracy
equal and greater than mina but the cover ratio is as large as possible.

3. Alternative bias on rule cover ratio and accuracy. LUPC starts with high-
est values of α and β, and alternatively learns rules with bias on either
accuracy or cover ratio, then reduces one of the corresponding α or β
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while keeping the other. The search is done until reaching the stopping.
condition.

Note that cov+(R) can be quickly determined because |Pos| ¿ |Neg|.
When searching for αβ-strong rules, a candidate rule will be eliminated with-
out continuing to scan though large set Neg if this property holds during
scanning.

Proposition 1. Given a threshold α, a rule R is not αβ-strong for any
arbitrary β if cov−(R) ≥ ((1− α)/α)× cov+(R).

Figure 1 presents the scheme of algorithm LUPC that consists of two main
procedures Learn-Positive-Rule and BestRule (Ho and Nguyen, 2003). LUPC
has been applied to study stomach cancer and hepatitis with successes.

3 Conceptual clustering

A theory of concept lattices has been studied under the name formal concept
analysis (FCA) (Wille, 1982). Considers a context as a triple (O,D,R) where
O be a set of objects, D be a set of primitive descriptors and R be a binary
relation between O and D, i.e., R ⊆ O ×D and (o, d) ∈ R is understood as
the fact that object o has the descriptor d. For any object subset X ⊆ O,
the largest tuple common to all objects in X is denoted by λ(X). For any
tuple S ∈ T , the set of all objects satisfying S is denoted by ρ(S). A tuple S
is closed if λ(ρ(S)) = S. Formally, a concept C in the classical view is a pair
(X, S), X ⊆ O and S ⊆ T , satisfying ρ(S) = X and λ(X) = S. X and S are
called extent and intent of C, respectively. Concept (X2, S2) is a subconcept
of concept (X1, S1) if X2 ⊆ X1 which is equivalent to S2 ⊇ S1, and (X1, S1)
is then a superconcept of (X2, S2).

It was shown that λ and ρ define a Galois connection between the power
sets ℘(O) and ℘(D), i.e., they are two order-reversing one-to-one operators.
As a consequence, the following properties hold which will be exploited in
the learning process:

if S1 ⊆ S2 then ρ(S1) ⊇ ρ(S2) and λρ(S1) ⊆ λρ(S2)
if X1 ⊆ X2 then λ(X1) ⊇ λ(X2) and ρλ(X1) ⊆ ρλ(X2)

S ⊆ λρ(S), X ⊆ ρλ(X)
ρλρ = ρ, λρλ = λ, λρ(λρ(S)) = λρ(S)

ρ(
⋃

j Sj) =
⋂

j ρ(Sj), λ(
⋃

j Xj) =
⋂

j λ(Xj)

The basic theorem in FCA states that the set of all possible concepts from
a context (O,D,R) is a complete lattice1 L, called Galois lattice, in which
infimum and supremum can be described as follows:

∧

t∈T

(Xt, St) = (
⋂

t∈T

Xt, λρ(
⋃

t∈T

St))

1 A lattice L is complete when each of its subsetf X has a least upper bound and
a greatest lower bound in L.
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Table 1. Scheme of OSHAM conceptual clustering

Input concept hierarchy H and an existing splittable concept Ck.
Result H formed gradually.
Top-level call OSHAM(root concept, ∅).

1. While Ck is still splittable, find a new subconcept of it that corresponds to the
hypothesis minimizing the quality function q(Ck) among η hypotheses gener-
ated by the following steps

(a) Find a “good” attribute-value pair concerning the best cover of Ck.
(b) Find a closed attribute-value subset S containing this attribute-value pair.
(c) Form a subconcept Cki with the intent is S.
(d) Evaluate the quality function with the new hypothesized subconcept.
Form intersecting concepts corresponding to intersections of the extent of the
new concept with the extent of existing concepts excluding its superconcepts.

2. If one of the following conditions holds then Ck is considered as unsplittable

(a) There exist not any closed proper feature subset.
(b) The local instances set Cr

k is too small.
(c) The local instances set Cr

k is homogeneous enough.
3. Apply recursively the procedure to concepts generated in step 1.

∨

t∈T

(Xt, St) = (ρλ(
⋃

t∈T

Xt),
⋂

t∈T

St)

OSHAM (Making Automatically a Hierarchy of Structured Objects) is
our proposed conceptual clustering method (Ho, 1997), (Ho and Luong,
1997). OSHAM allow generating descriptive rules from symbolic unsuper-
vised datasets.

4 Tolerance rough set model and applications

The tolerance rough set model (TRSM) aims to enrich the document rep-
resentation in terms of semantics relatedness by creating tolerance classes
of terms in T and approximations of subsets of documents. The model has
the root from rough set models and its extensions. The key idea is among
three properties of an equivalence relation R in an universe U used in the
original rough set model (reflexive: xRx; symmetric: xRy → yRx; transitive:
xRy ∧ yRz → xRz for ∀x, y, z ∈ U), the transitive property does not always
hold in natural language processing, information retrieval, and consequently
text data mining. In fact, words are better viewed as overlapping classes
which can be generated by tolerance relations (requiring only reflexive and
symmetric properties).

The key issue in formulating a TRSM to represent documents is the iden-
tification of tolerance classes of index terms. We employ the co-occurrence
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Table 2. The TRSM nonhierarchical clustering algorithm

Input The set D of documents and the number K of clusters.
Result K clusters of D associated with cluster membership of each document.

1. Determine the initial representatives R1, R2, ..., RK of clusters C1, C2, ..., CK

as K randomly selected documents in D.
2. For each dj ∈ D, calculate the similarity S(U(R, dj), Rk) between its upper

approximation U(R, dj) and the cluster representative Rk, k = 1, ..., K. If this
similarity is greater than a given threshold, assign dj to Ck and take this
similarity value as the cluster membership m(dj) of dj in Ck.

3. For each cluster Ck, re-determine its representative Rk.
4. Repeat steps 2 and 3 until there is little or no change in cluster membership

during a pass through D.
5. Denote by du an unclassified document after steps 2, 3, 4 and by NN(du)

its nearest neighbor document (with non-zero similarity) in formed clusters.
Assign du into the cluster that contains NN(du), and determine the clus-
ter membership of du in this cluster as the product m(du) = m(NN(du)) ×
S(U(R, du),U(R,NN(du))). Re-determine the representatives Rk, for k =
1, ..., K.

of index terms in all documents from D to determine a tolerance relation
and tolerance classes. Denote by fD(ti, tj) the number of documents in D in
which two index terms ti and tj co-occur. We define an uncertainty function
I depending on a threshold θ as Iθ(ti) = {tj | fD(ti, tj) ≥ θ} ∪ {ti}.

It is clear that the function Iθ defined above satisfies the condition of
ti ∈ Iθ(ti) and tj ∈ Iθ(ti) iff ti ∈ Iθ(tj) for any ti, tj ∈ T , and so Iθ is both
reflexive and symmetric. This function corresponds to a tolerance relation
I ⊆ T × T that tiItj iff tj ∈ Iθ(ti), and Iθ(ti) is the tolerance class of
index term ti. A vague inclusion function ν, which determines how much X
is included in Y , is defined as ν(X,Y ) = |X ∩ Y |/|X|

This function is clearly monotonous with respect to the second argument.
Using this function the membership function, a similar notion as that in
fuzzy sets, µ for ti ∈ T , X ⊆ T can be defined as µ(ti, X) = ν(Iθ(ti), X) =
|Iθ(ti) ∩X|/|Iθ(ti)|

With these definitions we can define a tolerance space as R = (T , I, ν, P )
in which the lower approximation L(R, X) and the upper approximation
U(R, X) in R of any subset X ⊆ T can be defined as

L(R, X) = {ti ∈ T | ν(Iθ(ti), X) = 1}
U(R, X) = {ti ∈ T | ν(Iθ(ti), X) > 0}

The term-weighting method is extended to define weights for terms in the
upper approximation U(R, dj) of dj . It ensures that each term in the upper
approximation of dj but not in dj has a weight smaller than the weight of
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Table 3. TRSM-based hierarchical agglomerative clustering algorithm

Input A collection of M documents D = {d1, d2, . . . , dM}
Result Hierarchical structure of D

Given: a collection of M documents D = {d1, d2, . . . , dM}
a similarity measure sim : P(D)× P(D) → R

for j = 1 to M do
Cj = {dj} end
H = {C1, C2, , . . . , CM}
i = M + 1
while |H| > 1

(Cn1 , Cn2) = argmax(Cu,Cv)∈H×Hsim(U(R, Cu),U(R, Cv)
Ci = Cn1 ∪ Cn2

H = (H \ {Cn1 , Cn2}) ∪ {Ci}
i = i + 1

any term in dj .

wij =





(1 + log(fdj (ti)))× log M
fD(ti)

if ti ∈ dj ,

minth∈dj whj × log(M/fD(ti))
1+log(M/fD(ti))

if ti ∈ U(R, dj) \ dj

0 if ti 6∈ U(R, dj)

The vector length normalization is then applied to the upper approxima-
tion U(R, dj) of dj . Note that the normalization is done when considering a
given set of index terms. Denote the document set by D = {d1, d2, . . . , dM}
where dj = (t1j , w1j ; t2j , w2j ; . . . ; trj , wrj) and wij ∈ [0, 1]. The set of all
terms from D is denoted by T = {t1, t2, . . . , tN}. In information retrieval, a
query is given the form Q = (q1, w1q; q2, w2q; . . . ; qs, wsq) where qi ∈ T and
wiq ∈ [0, 1].

Table 2 and Table 3 describe two general TRSM-based nonhierarchi-
cal and hierarchical clustering algorithms. The TRSM-based nonhierarchical
clustering algorithm can be considered as a reallocation clustering method
to form K clusters of a collection D of M documents. The main point of the
TRSM-based hierarchical clustering algorithm is at each merging step it uses
upper approximations of documents in finding two closest clusters to merge.

In (Ho et al., 2002), we have applied TRSM and TRSM-based clustering
algorithms to information retrieval and text analysis tasks. Interestingly, the
TRSM cluster-based retrieval achieved higher recall than that of full retrieval
in our experiments, especially the TRSM cluster-based retrieval usually offers
precision higher than that of full retrieval in most experiments, and achieves
recall and precision nearly as that of full search just after searching on one
or two clusters.
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