
U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

August 2, 2007 Time: 06:14pm t1-v1.1

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

An Overview on the Approximation Quality
Based on Rough-Fuzzy Hybrids

Van-Nam Huynh, Tu-Bao Ho and Yoshiteru Nakamori

Abstract The so-called measure of approximation quality plays an important role
in many applications of rough set based data analysis. In this chapter, we provide
an overview on various extensions of approximation quality based on rough-fuzzy
and fuzzy-rough sets, along with highlighting their potential applications as well as
future directions for research in the topic.

1 Introduction

After nearly twenty years since the introduction of fuzzy sets theory [51], Pawlak
[33] introduced the notion of a rough set as a new mathematical tool to deal with
the approximation of a concept in the context of incomplete information. Basically,
while a fuzzy set models the ill-definition of the boundary of a concept often de-
scribed linguistically, a rough set characterizes a concept by its lower and upper
approximations due to indiscernibility between objects arose because of incom-
pleteness of available knowledge. Since its inception, the rough set theory has been
proven to be of substantial importance in many areas of application [34, 39, 45].

During the last decades, many attempts to establish the relationships between
the two theories, to compare each to the other, and to simultaneously hybridize
them have been made, e.g., [10, 30, 31, 35, 40, 46, 47, 49, 50]. Among these lines
of research, rough fuzzy hybridization has emerged as a promising new paradigm
for decision-making related applications [17, 18, 31, 32], data analysis [22, 25]
and many others. This is due to rough-fuzzy hybrids can encapsulate two distinct
aspects of imperfection of knowledge being vagueness and indiscernibility, which
may simultaneously occur in many situations of practical application [10].

On the other hand, one of issues of great practical importance in data analysis
is discovering dependencies between attributes in datasets. In rough set theory, the
notion of approximation quality (also called degree of dependency) is often used
to evaluate the classification success of attributes in terms of a numerical evalua-
tion of the dependency properties generated by these attributes. Particularly, it has
been used as a useful tool, for instance, for discovering data dependencies and for
semantics-preserving feature reduction using only the given data without any ad-
ditional information as required by other theories [13, 25, 34]. This chapter aims

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2007 493
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494 V.-N. Huynh et al.

at providing an overview on various extensions of approximation quality based on
rough-fuzzy hybrids, along with highlighting their potential applications and future
directions for research in the topic as well.

The structure of the rest of this chapter is as follows. Section 2 briefly introduces
necessary notions of fuzzy sets and rough sets. Section 3 recalls Pawlak’s notions
of approximation quality and significance of attributes. In Sect. 4, the notions of
rough fuzzy sets and fuzzy rough sets are reviewed in relation to their applications
in practice. Sect. 5 devotes to an overview on rough-fuzzy hybrids based extensions
of approximation quality, accompanying with illustrative examples. Finally, some
concluding remarks and future work are presented in Sect. 6.

2 Basic of Rough Sets and Fuzzy Sets

In this section we briefly recall basic notions of fuzzy sets and rough sets. For the
purpose of this paper, it is sufficient to consider the finite version of universes of
discourse.

2.1 Fuzzy Sets

Let U be a finite and non-empty set called universe of discourse. A fuzzy set F
of U is a mapping μF : U −→ [0, 1], where for each x ∈ U we call μF (x) the
membership degree of x in F .

Given a number α ∈ (0, 1], the α-cut, or α-level set, of F is defined as follows

Fα = {x ∈ U|μF (x) ≥ α}

which is a subset of U. Let us denote rng(μF ) = μF (U) \ {0} and assume that
rng(μF ) = {α1, . . . , αn}, where αi > αi+1, for i = 1, . . . , n − 1. Then the mem-
bership function μF can be expressed as [12]

μF (x) =
∑

x∈Fαi

(αi − αi+1) (1)

Clearly, α1 = 1 if F is normal, i.e. ∃x such that μF (x) = 1. This representation of a
fuzzy set is considered as providing a probability based semantics for membership
function of fuzzy sets, where mi = (αi − αi+1), with αn+1 = 0 by convention,
can be viewed as the probability that Fαi stands as a crisp representative of F .
Then {(Fαi ,mi )|i = 1, . . . , n} is usually referred to as a finitely discrete consonant
random set, or body of evidence [41]. Note that the normalization assumption of
F insures the body of evidence does not contain the empty set. This view of fuzzy
sets has been also used in [2] to introduce the so-called mass assignment of a fuzzy
set, with relaxing the normalization assumption of fuzzy sets. Namely, the mass
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assignment of F , denoted by mF , is a probability distribution on 2U defined by

mF (∅) = 1− α1,

mF (Fαi ) = mi , for i = 1, . . . , n.
(2)

2.2 Rough Sets

Pawlak’s theory of rough sets begins with the notion of an approximation space,
which is a pair 〈U, R〉, where U is a non-empty set (the universe of discourse)
and R an equivalence relation on U , i.e., R is reflexive, symmetric, and transitive.
The relation R decomposes the set U into disjoint classes in such a way that two
elements x, y are in the same class iff (x, y) ∈ R. If two elements x, y in U belong
to the same equivalence class, we say that x and y are indistinguishable. For X ∈
2U, in general it may not be possible to describe X precisely in 〈U, R〉. One may
then characterize X by a pair of lower and upper approximations defined as follows
[33]

R(X) = {x ∈ U|[x]R ⊆ X}; R(X) = {x ∈ U|[x]R ∩ X �= ∅}

where [x]R stands for the equivalence class of x by R. The pair (R(X), R(X)) is
the representation of an ordinary set X in the approximation space 〈U, R〉 or simply
called the rough set of X.

In the context of rough set based data analysis, the equivalence relation in an
approximation space is often interpreted via the notion of information systems. An
information system I is a pair I = 〈U,A〉, where U is a set of objects, A is a set
of attributes, and each attribute a ∈ A associated with the set of attribute values Va

is understood as a mapping a : U → Va . An information system is called a decision
system if assuming that the set of attributes A = C ∪D and C ∩D �= ∅, where C is
the set of conditional attributes and D is the set of decision attributes. Given an
information system I, each subset P of the attribute set A induces an equivalence
relation IND(P) called P-indiscernibility relation as follows

IND(P) = {(x, y) ∈ U
2|a(x) = a(y), for all a ∈ P}

and IND(P) = ∩
a∈P

IND({a}). If (x, y) ∈ IND(P) we then say that objects x and y

are indiscernible with respect to attributes in P. In other words, we cannot distin-
guish x from y, and vice versa, in terms of attributes in P. Note that the partition of
U generated by IND(P), denoted by U/IND(P), can be calculated in terms of those
partitions generated by single attributes in P as follows [24]

U/IND(P) = ⊗
a∈P

U/IND({a}) (3)
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where

X ⊗ Y = {X ∩ Y |X ∈ X ,Y ∈ Y, X ∩ Y �= ∅}

For simplicity of notation, from now on we use the same notation P to denote the
equivalence relation induced from a set P of attributes, instead of IND(P).

3 Pawlak’s Approximation Quality

As mentioned in [13], one of the strengths of rough set theory is the fact that all its
parameters are directly obtained from the given data. That is, in rough set theory
the numerical value of imprecision is calculated by making use of the granularity
structure of the data only, while other uncertainty theories like Dempster-Shafer
theory [41] or fuzzy set theory [26] require probability assignments and membership
values respectively.

In [34], Pawlak firstly introduces two numerical characterizations of imprecision
of a subset X in the approximation space 〈U, P〉: accuracy and roughness. Accuracy
of X , denoted by αP (X), is simply the ratio of the number of objects in its lower
approximation to that in its upper approximation; namely

αP (X) = |P(X)||P(X)| (4)

where | · | denotes the cardinality of a set. Then the roughness of X , denoted by
ρP(X), is defined by subtracting the accuracy from 1 as

ρP (X) = 1− αP (X) = 1− |P(X)||P(X)| (5)

Note that the lower is the roughness of a subset, the better is its approximation.
In [48], Yao has interpreted Pawlak’s accuracy measure in terms of a classic dis-
tance measure based on sets, called Marczewski-Steinhaus (MS) metric [27], which
is defined by

DM S(X,Y ) = |X ∪ Y | − |X ∩ Y |
|X ∪ Y | = 1− |X ∩ Y |

|X ∪ Y |

Using MS metric, the roughness measure of a set X in 〈U, P〉 is the distance between
its lower and upper approximations.

Suppose now that two views of universe U are given, which may come from
two different subsets P and Q of attributes, by means of associated equivalence
relations. Then an interesting question arises to be how well the knowledge from
one view can be expressed by that from the other. In other words, we are concerned
here with the issue of measuring dependencies between attributes. This issue is very
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important in many tasks of data analysis. In rough set theory, the so-called approx-
imation quality measure γ [34] is often used for such a situation to describe the
degree of partial dependency between attributes.

Particularly, let P and Q be equivalence relations over U, then the approximation
quality of Q by P , also called degree of dependency, is defined by

γP(Q) = |POSP (Q)|
|U| (6)

where

POSP (Q) =
⋃

X∈U/Q

P(X) (7)

is called the positive region of the partition U/Q with respect to P . We then say
that Q depends on P in a degree k = γP(Q) (0 ≤ k ≤ 1) and denote as P ⇒k Q.
If k = 1, Q totally depends on P; if 0 < k < 1, Q partially (or roughly) depends
on P , and if k = 0, Q is totally independent from P .

Note that the approximation quality γP(Q) can be also represented in terms of
accuracy as follows

γP(Q) =
∑

X∈U/Q

|P(X)|
|U| αP (X) (8)

Then, γP(Q) is regarded as the weighted mean of the accuracies of approximation
of sets X ∈ U/Q by P [13].

Another issue of great practical importance is that of identifying how significant
a specific attribute (or a group of attributes) is in respect of the classification power.
This information is captured by calculating the change in dependency when an at-
tribute is removed from the set of considered conditional attributes. In particularly,
we can measure the significance of an attribute a ∈ P with respect to the classifica-
tion induced from Q by the difference

σP (Q, a) = γP(Q)− γP\{a}(Q) (9)

This measure expresses how influence on the quality of approximation if we drop
the attribute a from P . The higher the change in dependency, the more significant
the attribute is. If the significance is 0, the attribute is dispensable. A subset S of P
is called a Q-reduct of P (or a reduct of P with respect to Q) if γS(Q) = γP(Q).

In [13], the authors have also used the MS metric to re-interpret the rough ap-
proximation quality γ and ascertain its statistical significance. The approximation
quality measure and its extended variants have been extensively studied and used in
many applications, especially in feature selection, e.g., [4, 9, 22, 23, 24, 25, 43, 44]
and ranking problems, e.g., [14, 15, 16].
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4 Rough-Fuzzy Hybrids

As argued by Dubois and Prade [10], rough sets and fuzzy sets capture two distinct
aspects of imperfection of knowledge: indiscernibility and vagueness, that may be
simultaneously present in a given application. Therefore, it is necessary to find out
hybrid models which combines these notions for knowledge representation and inte-
gration in such situations. Among many possibilities for rough-fuzzy hybridization,
the most typical ones are to fuzzify sets to be approximated and/or to fuzzify the
equivalence relation in an approximation space [10, 11]. The first case allows to
obtain rough approximations of fuzzy sets which results in the so-called rough
fuzzy sets; while the second case allows to obtain approximations of (fuzzy) sets
by means of fuzzy similarity relations resulting in the so-called fuzzy rough sets.

4.1 Rough Fuzzy Sets

Given an approximation space 〈U, P〉. Let F be a fuzzy set in U with the member-
ship function μF . The upper and lower approximations P(F) and P(F) of F by P
are fuzzy sets in the quotient set U/P with membership functions defined by, for
each Fi ∈ U/P ,

μP(F)(Fi ) = sup
x∈Fi

{μF (x)}

μP(F)(Fi ) = inf
x∈Fi

{μF (x)}

The pair (P(F), P(F)) is then called a rough fuzzy set [11].
Furthermore, the rough fuzzy set (P(F), P(F)) naturally induces two fuzzy

sets P∗(F) and P∗(F) in U with membership functions are defined respectively
as follows

μP∗(F)(x) = μP(F)([x]P) and μP∗(F)(x) = μP(F)([x]P) (10)

That is, P∗(F) and P∗(F) are fuzzy sets with constant membership degree on
the equivalence classes of U by P , and for any x ∈ U, μP∗(F)(x) (respectively,
μP∗(F)(x)) can be viewed as the degree to which x possibly (respectively, definitely)
belongs to the fuzzy set F [3]. Conceptually, the pair (P∗(F), P∗(F)) can be viewed
as “extension” of rough fuzzy set (P(F), P(F)).

Rough fuzzy sets could find many applications in practical situations where a
fuzzy classification or a fuzzy concept must be approximated by available knowl-
edge expressed in terms of a Pawlak’s approximation space, for instance as in pattern
recognition and image analysis problems [1, 3, 5, 6, 7, 36, 37, 38, 42].
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4.2 Fuzzy Rough Sets

Let us consider another extension of rough sets corresponding to the second case
mentioned above. In this extension, instead of equipping the universe U with an
equivalence relation P , we consider a fuzzy similarity relation R, i.e., a fuzzy set R
of U

2, such that the properties of reflexivity (μR(x, x) = 1), symmetry (μR(x, y) =
μR(y, x)), and ∧-transitivity of the form

μR(x, z) ≥ μR(x, y) ∧ μR(y, z)

are holded [52]. In order to define fuzzy rough approximation operators, the coun-
terpart of equivalence classes called fuzzy equivalence classes must be defined first.
According to Zadeh [52], the fuzzy equivalence class [x]R of objects close to x is
defined by

μ[x]R (y) = μR(x, y),∀y ∈ U (11)

Interestingly, this definition degenerates to the usual definition of equivalence
classes when R is a non-fuzzy relation. Furthermore, Höhle [19] also proposed a
definition of what should be a fuzzy equivalence class X by means of the following
axioms

(i) μX is normalized, i.e. ∃x, μX (x) = 1,
(ii) μX (x) ∧ μR(x, y) ≤ μX (y),

(iii) μX (x) ∧ μX (y) ≤ μR(x, y).

Then, according to [10], a fuzzy set [x]R as in (11) is a fuzzy equivalence class in
the sense of Höhle.

The family of fuzzy equivalence classes {[x]R|x ∈ U}, also denoted by U/R,
forms a “fuzzy partition” of U. Also, a more direct way is to define a family F =
{F1, . . . , Fn} of normal fuzzy sets of U, with m < |U|, which covers U sufficiently
in the following sense

inf
x∈U

max
i

μFi (x) > 0

Further, a disjointness property between Fi ’s can be requested as

∀i, j, sup
x∈U

min{μFi (x), μFj (x)} < 1

In the literature, a stronger restriction is often adopted

n
∑

i=1

μFi (x) = 1 (12)
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for any x ∈ U. Then F plays the role of the family of fuzzy equivalence classes
induced from a similarity relation R, i.e., F = U/R.

Given a fuzzy approximate space 〈U, R〉, a fuzzy set F can be approximated by
means of the fuzzy partition U/R in terms of an R-upper and an R-lower approxi-
mation R(F) and R(F) as follows [10]

μR(F)(Fi ) = sup
x∈U

min{μFi (x), μF (x)} (13)

μR(F)(Fi ) = inf
x∈U

max{1− μFi (x), μF (x)} (14)

for any Fi ∈ U/R. The pair (R(F), R(F)) is then called a fuzzy rough set. When
Fi ’s are crisp, i.e., R is an equivalence relation, we obtain the rough approximation
of F which results in a rough fuzzy set defined previously.

As noted in [24], these definitions given in (13)–(14) differ a little from the crisp
rough approximations, as the memberships of individual objects to the approxima-
tions are not explicitly available. As a result of this, fuzzy rough approximations are
redefined as fuzzy sets of U [24] by

μR(F)(x) = sup
Fi∈U/R

min

(

μFi (x), sup
y∈U

min{μFi (y), μF (y)}
)

(15)

μR(F)(x) = sup
Fi∈U/R

min

(

μFi (x), inf
y∈U

max{1− μFi (y), μF (y)}
)

(16)

These definitions have been often used in application of fuzzy rough sets to dimen-
sionality reduction [22, 23, 24, 25, 44].

Remark 1. Note that (15)–(16) can be viewed as the “extension” of the fuzzy rough
set (R(F), R(F)), which was defined in [10] making use of the knowledge of fuzzy
similarity relation R directly, instead of fuzzy equivalence classes induced by R.
Particularly, according to Dubois and Prade [10], we have

μR(F)(x) = sup
y∈U

μF (x) ∗ μR(x, y) (17)

μR(F)(x) = inf
y∈U

μR(x, y)→ μF (y) (18)

where ∗ is a t-norm and → is an S-implication operator. However, in practical
applications of fuzzy rough sets in data analysis, the knowledge of fuzzy similarity
relation R may not be available, but a fuzzy linguistic partition of attribute domain
which plays the role of the family of fuzzy equivalence classes is often pre-assumed.
This practically explains why (15)–(16) is often used in application.

For a more general and comprehensive treatment of fuzzy rough sets, the readers
can refer, e.g., to [10, 11, 40, 49].
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5 Approximation Quality Based on Rough-Fuzzy Sets

As we have mentioned previously, rough fuzzy sets arise naturally when we want to
approximate a fuzzy set or a fuzzy classification by means of the available knowl-
edge expressed in terms of an approximation space 〈U, P〉.

The first case may often occur in, for example, problems of image analysis, where
U denotes a gray image or feature space and U/P is a partition of U, a fuzzy set
F can be viewed to represent ill-defined pattern classes or some imprecise image
property such as brightness, darkness, smoothness, etc [3, 7]. In such a situation,
roughness (or accuracy) of a fuzzy set F may be used to provide the information
of how well its approximation is in 〈U, P〉. Regarding to this, Banerjee and Pal [3]
have proposed a roughness measure for fuzzy sets and have discussed the issue of
how to use this measure in tasks of image analysis.

The second case may come up in a natural way when a linguistic classification
must be expressed by means of already existing knowledge P . For example, let us
consider two attributes “experience” and “salary” in a database of employees. Then
the attribute “experience” may take values in a finite set of labels such as good, poor,
very good, etc., and the attribute “salary” may have numerical values. Then it is
natural to intuitively infer a “partial” dependence between “experience” and “salary”
as (the better the experience, the higher the salary). However, such a dependency
could not be expressed in terms of traditional data dependencies, because there may
be different employees having the same value of “experience” but different salaries,
even in small magnitude. Therefore, it is necessary and useful to look for measures
such as the approximation quality that may support us as numerical characteristics
to realize partial dependency between attributes in such situations.

5.1 Roughness of a Fuzzy Set

Banerjee and Pal’s Approach

In [3], Banerjee and Pal have proposed a roughness measure for fuzzy sets in a
given approximation space. Essentially, this measure of roughness of a fuzzy set
depends on parameters that are designed as thresholds of definiteness and possibility
in membership of the objects in U to the fuzzy set.

More explicitly, let us be given an approximation space 〈U, P〉 and a fuzzy set F
in U. We now consider parameters α, β such that 0 < β ≤ α ≤ 1. The α-cut P∗(F)α
and β-cut P∗(F)β of fuzzy sets P∗(F) and P∗(F), respectively, are called to be the
α-lower approximation and the β-upper approximation of F in 〈U, P〉, respectively.
Then a roughness measure of the fuzzy set F with respect to parameters α, β, with
0 < β ≤ α ≤ 1, and the approximation space 〈U, P〉 is defined by

ρ
α,β
P (F) = 1− |P∗(F)α|

|P∗(F)β |
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By the assumption made on parameters, we have

1. 0 ≤ ρ
α,β
P (F) ≤ 1.

2. If F is a fuzzy set such that there is a member x in each equivalence class of
U/P with μF (x) < α, then ρ

α,β
P (F) = 1.

3. If F is a definable fuzzy set, i.e., μF is a constant function on each equivalence
class of U/P and α = β, then ρα,βP (F) = 0.

Note that while the third statement seems interesting as it says that the measure
ρ
α,β
P (·) inherits a property of Pawlak’s roughness measure, the second one may not

be well-justified. Furthermore, the following property of ρα,βP (·) proved in [3] may
be also undesired, unless the support of a constant fuzzy set, i.e. its strong 0-cut, is
definable in the approximation space.

Proposition 1. If F is a constant fuzzy set, say μF (x) = δ, for all x ∈ U, then
ρ
α,β
P (F) = 0, with the exception when β < δ < α, in which ρ

α,β
P (F) = 1.

Properties of the measure ρ
α,β
P (·) and its potential applications in the field of

pattern recognition have been reported and mentioned in [3], and more recently in
[53].

An Alternative Approach

In [20], the authors have introduced a parameter-free measure of roughness of a
fuzzy set that in fact is a generalization of Pawlak’s notion of roughness measure
and avoids the undesirable properties held by Banerjee and Pal’s roughness mea-
sure as mentioned above. Basically, this approach is based on the random set based
representation of a fuzzy set and defines its roughness as the weighted mean of
roughness measures of its crisp representatives.

In particularly, let rng(μF ) and mF be the range of the membership function
μF and the mass assignment of F , respectively. Recall that in this representation
of fuzzy set F , for each α ∈ rng(μF ), mF (Fα) is viewed as the probability that
Fα stands as a crisp representative of F . Under such a representation, the rough-
ness measure of F with respect to the approximation space 〈U, P〉 is defined as
follows

ρ̂P (F) =
∑

α∈rng(μF )

mF (Fα)(1− |P(Fα)||P(Fα)|
) ≡

∑

α∈rng(μF )

mF (Fα)ρP (Fα) (19)

Remark 2. With this definition of roughness, we have

• 0 ≤ ρ̂P(F) ≤ 1.
• ρ̂P (·) is a natural extension of Pawlak’s roughness measure for fuzzy sets, i.e., if

F is a crisp subset of U then ρ̂P(F) = ρP (F).
• F is a definable fuzzy set, i.e., if P(F) = P(F), if and only if ρ̂P (F) = 0.
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Table 1 The approximations of the fuzzy set μsmall

{0,2,4} {1,3,5} {6,8,10} {7,9}
μsmall∗ 0.25 0 0 0

μsmall∗ 1 1 0 0

Let us consider a simple example depicting the introduced notions.

Example 1. Suppose we are given an approximation space 〈U, P〉, where U =
{0, 1, 2, . . . , 10} and P is such that

U/P = {{0, 2, 4}, {1, 3, 5}, {6, 8, 10}, {7, 9}}

Let us consider a linguistic value small whose membership function is defined by

u 0 1 2 3 4 5 6 7 8 9 10

μsmall(u) 1 1 0.75 0.5 0.25 0 0 0 0 0 0

The approximations of the fuzzy set μsmall in 〈U, P〉 are given in Table 1. Then
we obtain the mass assignment for the linguistic value small, and approximations of
its focal sets given in Table 2.

Using Banerjee and Pal’s notion, we obtain

ρ
α,β
P (small) =

{

1 for α > 0.25
0.5 for 0.25 ≥ α > 0

where the constraint α ≥ β > 0 is always assumed. On the other hand, the rough-
ness by (19) yields

ρ̂P (small) =
∑

α∈rng(μsmall )

msmall(smallα)(1− |P(smallα)|
|P(smallα)|

) = 0.875

Let P∗(F) and P∗(F) be fuzzy sets of U induced from the rough fuzzy set
(P(F), P(F)) as in preceding section. Denote

Table 2 Mass assignment for small and approximations of its focal sets

rng(μsmall ) 1 0.75 0.5 0.25

smallα {0, 1} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3, 4}
msmall(smallα) 0.25 0.25 0.25 0.25

P(smallα) ∅ ∅ ∅ {0, 2, 4}
P(smallα) {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5}
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rng(μP∗(F)) ∪ rng(μP∗(F)) = {ω1, . . . , ωp}

such thatωi > ωi+1 > 0 for i = 1, . . . , p−1.Obviously, {ω1, . . . , ωp} ⊆ rng(μF ).
With these notations, the following holds [20]

Lemma 1. For any 1 ≤ j ≤ p, if there exists αi , αi ′ ∈ rng(μF ) such that ω j+1 <

αi < αi ′ ≤ ω j then we have Fαi ≈P Fα′i , i.e. P(Fαi ) = P(Fα′i ) and P(Fαi ) =
P(Fα′i ), and so ρR(Fαi ) = ρR(Fα′i ).

Further, the following lemma is due to Dubois and Prade [10]

Lemma 2. For any α ∈ (0, 1], we have

P∗(F)α = P(Fα) and P∗(F)α = P(Fα)

It then follows from Lemmas 1 and 2 that ρ̂P(F) can be represented in terms of
level sets of fuzzy sets P∗(F) and P∗(F) as the following proposition shows.

Proposition 2. ρ̂P(F) =
p
∑

j=1
(ω j − ω j+1)(1−

|P∗(F)ω j |
|P∗(F)ω j | ), where ωp+1 = 0, by

convention.

Example 2. Let us continue with the approximation space 〈U, P〉 and the fuzzy set
small given in Example 1. We have

rng(μsmall) = {1, 0.75, 0.5, 0.25}

By Table 1, we obtain

rng(μP∗(small)) ∪ rng(μP∗(small)) = {1, 0.25}

which makes a partition of rng(μsmall) as {{1, 0.75, 0.5}, {0.25}}. It is easily to see
that Table 2 illustrates for Lemma 1, and by Proposition 2 we get

ρ̂R(small) = (1− 0.25)(1− P∗(small)1
P∗(small)1

)+ 0.25(1− P∗(small)0.25

P∗(small)0.25
) = 0.875

which coincides with that given in Example 1.

Similar to the case of roughness of a crisp set, we have also the following propo-
sition [20].

Proposition 3. If fuzzy sets F and G in U are roughly equal in 〈U, R〉, then we have
ρ̂R(F) = ρ̂R(G).
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5.2 Approximation Quality of a Fuzzy Classification

Let P and Q be two equivalence relations over universal set U. As mentioned above,
P and Q may be induced respectively by sets of attributes applied to objects in U.
Then the approximation quality γP(Q) of Q by P defined by (6) can be rewritten
as

γP(Q) = 1

|U|
∑

X∈U/Q

|P(X)| (20)

In [34], Pawlak also defines the so-called approximation accuracy of Q by P ,
which extends the approximation accuracy of sets, by

αP (Q) =
∑

X∈U/Q |P(X)|
∑

X∈U/Q |P(X)|
(21)

which is easily represented in terms of accuracies of sets as follows

αP (Q) =
∑

X∈U/Q

|P(X)|
∑

Y∈U/Q |P(Y )|
αP(X)

That is, the approximation accuracy of a classification can be regarded as the convex
sum of accuracies of its classes.

Furthermore, as mentioned in [34], the measure of approximation quality γP(Q)

does not capture how this partial dependency is actually distributed among classes of
U/Q. To capture this information we need the so-called precision measure πP(X),
for X ∈ U/Q, defined by

πP(X) = |P(X)|
|X | (22)

Clearly, we have πR(X) ≥ αP (X), for any X ∈ U/Q. The two measures γP(Q)

and πP(X), X ∈ U/Q, give us full information about the “classification power” of
the knowledge P with respect to the classification U/Q.

Now let us consider a fuzzy classification ˜Q of U instead of a crisp one Q,
i.e., U/˜Q is a fuzzy partition of U. This situation may naturally occur when a
linguistic classification must be approximated in terms of already existing knowl-
edge P . For example, assume that we have a personnel database given as D =
PERSONNEL[I D; Name; Posi tion; Salary], and attribute Position induces an
approximation space 〈D, IND(Posi tion)〉. Given a linguistic description on the at-
tribute Salary, say ‘high’, it defines a fuzzy set on D denoted by Dhigh . Then the
accuracy of the fuzzy set Dhigh , namely

α̂IND(Posit ion)(Dhigh) = 1− ρ̂IND(Posit ion)(Dhigh)
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may express the degree of completeness of our knowledge about the statement
“Salary is high”, given the granularity of D/IND(Posi tion). Further, a linguistic
classification, say {low,medium, high}, may be imposed on the attribute Salary
that induces a fuzzy partition of D. Now one may want to measure a degree of
dependency between “knowledge on attribute Salary expressed linguistically” and
“knowledge on attribute Position”.

In such a situation, guided by (20)–(21) and the random set based interpretation
of a fuzzy set, the approximation quality and accuracy of a fuzzy classification ˜Q
by a crisp classification P can be defined [20, 21] as

γ̂P(˜Q) = 1

|U|
∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)| (23)

and

α̂P (˜Q) =

∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)|
∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)|
(24)

respectively, where for X ∈ U/˜Q, m X stands for the mass assignment of X .
On the other hand, for each fuzzy class X ∈ U/˜Q, viewing P(X) as the induced

fuzzy set P∗(X) of U (refer to (10)) defined by

μP∗(X)(x) = μP(X)([x]P)

we can then define a counterpart of (7) for POSP (˜Q) as a fuzzy set of U by

μPOSP (˜Q)(x) = max
X∈U/˜Q

μP∗(X)(x) (25)

Thus, guided by (6), another extension of the approximation quality can be also
defined as

γ̂ ′P(˜Q) = |POSP(˜Q)|
|U| =

∑

x∈U

μPOSP (˜Q)(x)

|U| (26)

Similarly, rewriting (21) as

αP (Q) =
| ∪

X∈U/Q
P(X)|

∑

X∈U/Q |P(X)|

suggests another extension of approximation accuracy of ˜Q by P defined by
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α̂′P(˜Q) = |POSP(˜Q)|
∑

X∈U/˜Q

|P(X)| =

∑

x∈U

μPOSP (˜Q)(x)

∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)|
(27)

It is worth noting [20] here that the approximation quality and accuracy of ˜Q by
P defined by (23)–(24) can be respectively represented as

γ̂P(˜Q) = 1

|U|
∑

X∈U/˜Q

|P∗(X)| = 1

|U|
∑

X∈U/˜Q

∑

x∈U

μP∗(X)(x) (28)

α̂P (˜Q) =

∑

X∈U/˜Q

|P∗(X)|
∑

X∈U/˜Q

|P∗(X)| =

∑

X∈U/˜Q

∑

x∈U

μP∗(X)(x)

∑

X∈U/˜Q

∑

x∈U

μP∗(X)(x)
(29)

which interestingly turn out to be natural extensions of (20) and (21), respectively,
for the crisp case.

Clearly, two different, but equivalent, representations of γP(Q) and αP (Q) lead
to various different extensions in the fuzzy case. Therefore, the natural question
arises is that what extension should be used in practice. Theoretically, it seems
difficult to give a satisfactory answer to the question, however, an appropriate se-
lection could be made on the basis of experimental evaluations as usual for a given
application.

In the following we consider a simple example to illustrate discussed extensions.

Example 3. Let us consider a relation in a relational database as shown in Table 3
(this database is a variant of that found in [8]).

Let P be the set of attributes D (degree) and E (experience). We then obtain
an approximation space 〈U, P〉, where U = {1, . . . , 16}, with the corresponding
partition

Table 3 Relation in a relational database

ID Degree Experience Salary ID Degree Experience Salary

1 Ph.D. good 63K 9 M.S. poor 41K

2 Ph.D. very poor 47K 10 M.S. very good 68K

3 M.S. good 53K 11 M.S. good 50K

4 B.S. very poor 26K 12 B.S. very poor 23K

5 B.S. poor 29K 13 M.S. good 55K

6 Ph.D. very poor 50K 14 M.S. good 51K

7 B.S. poor 35K 15 Ph.D. good 65K

8 M.S. poor 40K 16 M.S. very good 64K
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Fig. 1 A linguistic partition
of attribute salary

2K 2.5K 3K 3.5K 4K 4.5K 5K 5.5K 6K 6.5K 7K 
0

0.2

0.4

0.6

0.8

1

Salary

M
em

be
rs

hi
p 

gr
ad

es

Low
Medium
High

U/P = {{1, 15}, {2, 6}, {3, 11, 13, 14},
{4, 12}, {5, 7}, {8, 9}, {10, 16}}

AU: Please provide
citation for Fig 1.

Further, consider now for example a linguistic classification over attribute S
(salary), i.e. ˜Q = {S}, with membership functions of linguistic classes Low,
Medium, High graphically depicted as in Fig. 2. Then the linguistic classification
induces a fuzzy partition U/˜Q whose membership functions of fuzzy classes are
shown in Table 4.

Then approximations of the fuzzy partition U/˜Q in the approximation space
〈U, P〉 are given in Table 5.

Using (28) and (29) we obtain

γ̂P(˜Q) = 13.46

16
= 0.84, and α̂P (˜Q) = 13.46

18.21
= 0.739

respectively. That is, we have the following partial dependency in the database

{D,E} ⇒0.84 S (30)

Note that making use of (26) and (27) gives us

Table 4 Induced fuzzy partition of U based on salary

U μLow μMedium μH igh U μLow μMedium μH igh

1 0 0 1 9 0.27 0.73 0

2 0 0.87 0.13 10 0 0 1

3 0 0.47 0.53 11 0 0.67 0.33

4 1 0 0 12 1 0 0

5 1 0 0 13 0 0.33 0.67

6 0 0.67 0.33 14 0 0.6 0.4

7 0.67 0.33 0 15 0 0 1

8 0.33 0.67 0 16 0 0 1
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Table 5 The approximations of the fuzzy partition U/˜Q in 〈U, P〉
Xi {1, 15} {2, 6} {3, 11, 13, 14} {4, 12} {5, 7} {8, 9} {10, 16}
μP∗(H igh) 1 0.13 0.33 0 0 0 1

μP∗(H igh) 1 0.33 0.67 0 0 0 1

μP∗(Medium) 0 0.67 0.33 0 0 0.67 0

μP∗(Medium) 0 0.87 0.67 0 0.33 0.73 0

μP∗(Low) 0 0 0 1 0.67 0.27 0

μP∗(Low) 0 0 0 1 1 0.33 0

γ̂ ′P(˜Q) = 11.34

16
= 0.709, and α̂′P (˜Q) = 11.34

13.88
= 0.82

Now in order to show how the influence of, for example, attribute E on the quality
of approximation, let us consider the partition induced by the relation R = P\{E} =
{D} as follows

U/R = {{1, 2, 6, 15}, {3, 8, 9, 10, 11, 13, 14, 16}, {4, 5, 7, 12}}

Then we obtain approximations of the fuzzy partition U/˜Q in the approximation
space 〈U, R〉 given in Table 6.

Thus we have

γ̂R(˜Q) = γ̂P\{E}(˜Q) = 3.2

16
= 0.2

Similarly, we also easily obtain

γ̂P\{D}(˜Q) = 5.06

16
= 0.316

As we can see, both attributes D and E are highly significant because without
each of them the approximation quality γ̂P(˜Q) changes considerably.

Table 6 The approximations of the fuzzy partition U/˜Q in 〈U, R〉
Xi {1, 2, 6, 15} {3, 8, 9, 10, 11, 13, 14, 16} {4, 5, 7, 12}
μR∗(H igh) 0.13 0 0

μR∗(H igh) 1 1 0

μR∗(Medium) 0 0 0

μR∗(Medium) 0.87 0.73 0.33

μR∗(Low) 0 0 0.67

μR∗(Low) 0 0.33 1
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6 Approximation Quality Based on Fuzzy-Rough Sets

Let us turn to a fuzzy approximation space 〈U, P〉, where P is a fuzzy similarity
relation over universe U. This fuzzy similarity relation induces a fuzzy partition
over U denoted by U/P as mentioned previously. Assume now that U/Q is another
(fuzzy) partition of U. In order to have a counterpart of (6) for the approximation
quality of Q by P in this situation, one needs to define the fuzzy positive region
POSP (Q) which is regarded as a fuzzy set of U. Then, once having defined the
fuzzy positive region, an extension of the approximation quality of Q by P can be
defined [24, 28] as follows

γ̂P(Q) = |POSP(Q)|
|U| =

∑

x∈U

μPOSP (Q)(x)

|U| (31)

where 
-count is used for the cardinality of a fuzzy set.
In the case that the knowledge of P is not given directly but, instead, a fuzzy

partition U/P is predefined, Jensen and Shen [24, 25] have defined the membership
function of fuzzy positive region POSP(Q), for any object x ∈ U, as

μPOSP (Q)(x) = sup
X∈U/Q

μP(X)(x) (32)

where the membership function μP(X)(x) of fuzzy lower approximations can be
defined by (16). Note that when U/P is a crisp partition, (31) is identical to (26)
above. This approach has been successfully used for the task of feature reduction
for crisp and real-valued datasets in various applications of data mining [22, 23, 24,
25, 44].

In particularly, regarding the issue of feature reduction in crisp and real-valued
datasets, each real-valued attribute a is first associated with a fuzzy linguistic parti-
tion denoted by U/{a}, then the fuzzy partition U/P induced by a set P of attributes
defined over objects in U is defined as a fuzzy counterpart of (3) as follows

U/P = ⊗
a∈P

U/{a} (33)

where t-norm min is used for the fuzzy intersection. On the basis of these above
extensions, a fuzzy-rough based method of attribute reduction described by the
so-called fuzzy-rough QuickReduct algorithm has been proposed and applied to Web
categorization in [24] and complex systems monitoring [25].

The following simple example taken from [24] will illustrate how these exten-
sions work.

Example 4. Let us consider an example data set and fuzzy sets N and Z given in
Fig. 2. Here, for illustrative simplicity, the fuzzy sets are viewed as fuzzy classes
defined for all real-valued attributes.

Then we have the following partitions induced from corresponding individual
attributes
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1

–0.5 0.50

N
Z

Object a

1 –.4 –.3 –.5 no
2 –.4 .2 –.1 yes
3 –.3 –.4 –.3 no
4 .3 –.3 yes
5 .2 –.3 yes
6 .2 0

0
0

no0

b c q

Fig. 2 Data set and corresponding fuzzy sets

U/A = {Na , Za}, U/B = {Nb, Zb},
U/C = {Nc, Zc}, U/Q = {{1, 3, 6}, {2, 4, 5}},

where A = {a}, B = {b},C = {c}, Q = {q} and membership functions of corre-
sponding fuzzy classes are given in Table 7.

The following fuzzy partitions induced from subsets of conditional attributes are
obtained by (33)

U/{a, b} = {Na ∩ Nb, Na ∩ Zb, Za ∩ Nb, Za ∩ Zb},
U/{b, c} = {Nb ∩ Nc, Nb ∩ Zc, Zb ∩ Nc, Zb ∩ Zc},
U/{a, c} = {Na ∩ Nc, Na ∩ Zc, Za ∩ Nc, Za ∩ Zc},

U/{a, b, c} = {Na ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Zc, Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc,

Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc}

where ∩ = min. Using (16) and (31) respectively for calculating fuzzy lower ap-
proximations and the approximation quality, we obtain

γ̂A(Q) = 2

6
, γ̂B(Q) = 2.4

6
, γ̂C(Q) = 1.6

6
, γ̂{a,b}(Q) = 3.4

6

γ̂{b,c}(Q) = 3.2

6
, γ̂{a,c}(Q) = 3.2

6
, γ̂{a,b,c}(Q) = 3.4

6

Table 7 Membership functions of corresponding fuzzy classes

Object a b c q

Na Za Nb Zb Nc Zc {1, 3, 6} {2, 4, 5}
1 0.8 0.2 0.6 0.4 1.0 0.0 1.0 0.0

2 0.8 0.2 0.0 0.6 0.2 0.8 0.0 1.0

3 0.6 0.4 0.8 0.2 0.6 0.4 1.0 0.0

4 0.0 0.4 0.6 0.4 0.0 1.0 0.0 1.0

5 0.0 0.6 0.6 0.4 0.0 1.0 0.0 1.0

6 0.0 0.6 0.0 1.0 0.0 1.0 1.0 0.0
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From these results it can be seen that the attribute c is not significant at all because
removing it from the set of conditional attributes does not cause any change in the
approximation quality, i.e. c is dispensable. Details on the fuzzy-rough QuickReduct

algorithm as well as how it could be applied to generate the Q-reduct {a, b} of
P = {a, b, c} for this example can be referred to [22, 24, 25].

In the study of fuzzy information systems, in which attribute values of object
may be fuzzy (linguistic) values, Mieszkowicz-Rolka and Rolka [28] proposed to
define a so-called compatibility relation over U induced from a set of attributes P
as follows

μP(x, y) = min
a∈P

sup
v∈Va

min(μ f (x,a)(v), μ f (y,a)(v)) (34)

where Va is the domain of attribute a; f (x, a) and f (y, a) are fuzzy values of x
and y at attribute a, respectively. Using this definition of a fuzzy similarity relation,
fuzzy lower approximations of fuzzy sets can be defined using (18) and then (31)
can be also used to define the approximation quality in case of fuzzy information
systems.

Similarly, as discussed in the preceding section, it is of interest to mention here
that equivalent representation of the approximation quality γP (Q) by (20) may also
suggest another extension for γ̂P(Q). However, due to overlapping of fuzzy lower
approximations, in this case we may need to carry out some normalization. For
example, we can normalize involved fuzzy similarity relations so that (12) is satis-
fied, then a fuzzy counterpart of (20) can be used to define an extension for γ̂P (Q).
Another possibility is that we can carry out a normalization after defining a fuzzy
counterpart of (20), for instance, as follows

γ̂P(Q) = 1

|U||U/Q|
∑

X∈U/Q

∑

x∈U

μP(X)(x) (35)

Intuitively, we may observe that if the fuzzy lower approximation of some (fuzzy)
class in U/Q dominates all those of the others, it solely affects the approximation
quality γ̂P(Q) defined by (31), while others classes play no role. This situation does
not occur in the crisp case because of the disjoint union. In such a situation, an
extension for γ̂P(Q) guided by (20) may be interesting to be considered since, in
any case, it takes fuzzy lower approximations of all classes in U/Q into account.
This, however, requires further research.

7 Conclusion and Future Work

The concepts of approximation quality essentially play an important role in practical
applications of rough set theory. They supply numerical characterizations for mea-
suring the dependency between attributes in databases and the accuracy of concept
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approximation using the given data alone and no additional information. At the same
time, rough-fuzzy hybrids have emerged naturally due to the need of encapsulating
the related but distinct concepts of vagueness and indiscernibility, both of which
occur as a result of imperfection in knowledge. This review paper has focused on
those extensions of approximation quality that make use of rough fuzzy and fuzzy
rough sets. We have also discussed how different but equivalent representations of
approximation quality in the (crisp) rough case may lead to various different ex-
tensions for rough-fuzzy cases. However, much research work should be done in
the future to explore theoretical features as well as practical implications of these
mentioned extensions.

Let us conclude here by pointing out some issues regarding the research topic
discussed, which would be interestingly considered for further research:

• Exploiting practical applications of roughness measure for fuzzy sets, particu-
larly in classification and image analysis problems as pointed out in [3, 42], as
well as its generalization in a fuzzy approximation space.

• Apart from those having been well studied, formulating and investigating other
extensions of the approximation quality, for example as mentioned in the preced-
ing section, and conducting comparative experiments to verify their applicability
in, for example, dimensionality reduction in comparison with known extensions
as studied in [22, 23, 24, 25, 44].

• Using rough-fuzzy hybrids based extensions of the approximation quality in ar-
eas of decision analysis [16], case-based reasoning [32] and knowledge discov-
ery [39].

• Studying extensions of approximation quality in variable precision fuzzy rough
sets model [29, 54] and their applicability.

Acknowledgment The authors would like to thank two anonymous reviewers and Editors for their
helpful comments and suggestions.
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